基于决策树的鸢尾花分类

本文介绍了如何使用决策树对鸢尾花数据集进行分类。数据集包含150个样本,分为3类,每类50个样本,特征包括花萼长度、花萼宽度、花瓣长度和花瓣宽度。文中详细展示了如何划分训练集和测试集,以及训练和评估决策树模型的过程,最终模型得分为0.9333。
摘要由CSDN通过智能技术生成

原文链接:https://www.jianshu.com/p/c09beac9f955
本文经过潇洒坤重新编辑,感谢原文作者的辛勤工作。

1.数据集

Iris(鸢尾花)数据集是多重变量分析的数据集。
数据集包含150行数据,分为3类,每类50行数据。
每行数据包括4个属性:Sepal Length(花萼长度)、Sepal Width(花萼宽度)、Petal Length(花瓣长度)、Petal Width(花瓣宽度)。可通过这4个属性预测鸢尾花属于3个种类的哪一类。
样本数据局部截图:

10345471-87df8234105ff9c7.png
Iris.png

获取150个样本数据的3种方法:
1.完整的样本数据Iris.csv文件下载链接:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值