RBF神经网络的介绍:点击打开链接
实验数据集 点击打开链接
代码
clear all
clc %清除命令窗口
load Data-Ass2;
d=data'; %求转置
dat=d(1:2500,1:2);
labels=d(1:2500,3);
inputNums=2; %输入层节点
outputNums=1; %输出层节点 许多情况下直接用1表示
hideNums=10; %隐层节点数
maxcount=1000; %最大迭代次数
samplenum=2500; %一个计数器,无意义
precision=0.001; %预设精度
alpha=0.01; %学习率设定值
a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改
error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间
errorp=zeros(1,samplenum); %同上
w=rand(hideNums,outputNums); %10*3;w表隐层到输出层的权值
%求聚类中心
[Idx,C]=kmeans(dat,hideNums);
%X 2500*2的数据矩阵
%K 表示将X划分为几类
%Idx 2500*1的向量,存储的是每个点的聚类标号
%C 10*2的矩阵,存