笔记:Scale-Transferrable Object Detection

尺度可转换目标检测

摘要

解决多尺度问题,与以往将来自不同网络深度的多个特征映射的目标预测结合起来的方法不同,本文提出的网络具有嵌入的尺度传递层,以明确探索跨多个检测尺度的尺度间一致性性质。尺度转换模块自然地适用于基本网络,计算量小。STDN得到显著改进。

一.介绍

为了在不影响检测速度的前提下获得高层次的语义多尺度特征图,我们开发了一个尺度转换模块(STM),并将该模块直接嵌入到DenseNet中。STM由池化和规模传输层组成。利用汇聚层获得小比例尺特征图,利用尺度转换层获得大比例尺特征图。

利用尺度传递模块构造了一种单级目标检测器,称为尺度传递检测网络(STDN),结构如下图:

STM优势:

1.结合DenseNet,特征映射同时拥有低层次的对象细节特征和高层次的语义特征。

2STM由池化和超分辨率层组成,不需要额外的参数和计算。

二. 相关工作

提高多尺度目标检测精度的方法主要有三种。一种是使用多层特征的组合来检测对象。另一种方法是利用不同的图层特征对不同尺度的目标进行预测。

本方法属于第三类方法。我们利用DenseNet[14]将不同层的特征组合起来,利用尺度转换模块得到不同分辨率的特征图。我们的模块可以直接嵌入到DenseNet网络中,几乎不需要额外的成本。

三.STDN

3.1 base network:Densenet

 

3.2 scale transfer layer

STM如上图 pooling+scale transfer layer

1*1*r^2-->r*r*1^2

四.实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值