【目标检测】STDN:Scale-Transferrable Object Detection

论文:《Scale-Transferrable Object Detection》  CVPR2018

论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf

参考文章:https://blog.csdn.net/xh_hit/article/details/79512146 

                  https://blog.csdn.net/DL_wly/article/details/100142415

1、STDN模型介绍

为解决物体检测中的多尺度问题,特别是提高对于小物体的检测效果,一些经典的算法不断出现,例如FPN、DSSD等,通过整合不同尺度的语义特征,在不同尺度的map上做预测,但是这些方法,在提高对于目标物体特别时小物体识别效果的同时由于加入了额外的层,也增大了计算量,影响了检测的实时性。下图显示了目前主流方法与本文方法之间的不同。通过(d)图我们可以发现,本文的scale-transfer module不仅改变了预测层map的尺寸,也改变了部分层的通道数。

针对以上问题,作者提出尺度变换模块(scale-transfer module    STM),即获得了不同尺度的语义特征,又没有增加额外的参数,降低检测的速度。其整体框架基于SSD,基础网络采用的是DenseNet-169,DenseNet通过多层连接的方式整合低层和高层信息,其特征提取能力较强。

STDN模型的主要框架如下:

整体网络结构与SSD类似,提取DenseNet-169的最后一个Dense block中的6个concatenate层作为预测的特征层。与SSD直接利用VGG16后几层直接预测不同的是,STDNC则加入了独创的STM,在不增加任何参数和计算量的同时达到基于低分率特征map获得高分率特征map的目的,最终实现整体网络正确率和速度的提升。

2、STM模块简介

   STM模块由池化层(Pooling)和尺度转换(scale-transfer)层组成。基础网络DenseNet-169最后一个block的尺寸为9*9,各层之间的通道数不同。为了获取不同尺度的特征map,作者将STM直接嵌入到DenseNet中,具体做法如下:

①Pooling用来获得小尺度的特征map

②尺度转换层通过减少feature maps的通道个数获得大尺度的map,整个过程没有增加任何参数。

参考上图整体模型结构,对于①很好理解,即是一般池化过程获得较小分辨率的map;

对于②则相当于增大的map尺寸而压缩了通道数。

作者在文中说“The scale-transfer layer is an operation of periodic rearrangement of elemenets”,并用了一个看似很深奥的公式表示这一过程。

结合作者给出的一个示意图和网络模型的最后两层非常好理解。

展示的就是增大map,压缩channel的示意。

也就是把信息搁到整张图上去,原本1x1的区域变成了rxr,相当于feature的一个rearrangement。

3、STDN网络信息

è¿éåå¾çæè¿°

4、实验结果

VOC 2007 test:

image

COCO:image

VOC上的速度与精度:

image

实验结果上来看,兼顾速度与精度。速度优势比较大。

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这里有 100 个以上目标检测模型的推荐: 1. R-CNN (Regions with CNN features) 2. Fast R-CNN 3. Faster R-CNN 4. Mask R-CNN 5. YOLO (You Only Look Once) 6. SSD (Single Shot Detector) 7. RetinaNet 8. DSSD (Deconvolutional Single Shot Detector) 9. YOLOv2 (You Only Look Once version 2) 10. YOLOv3 (You Only Look Once version 3) 11. YOLOv4 (You Only Look Once version 4) 12. R-FCN (Region-based Fully Convolutional Network) 13. FPN (Feature Pyramid Network) 14. G-CNN (Grid-based CNN) 15. MHYPER (Multi-Hyperplane CNN) 16. HyperNet (Hyperdimensional Network) 17. F-RCNN (Faster R-CNN with Feature Pyramid Network) 18. ION (Integral Objectness Network) 19. NO-CNN (Non-Overlapping CNN) 20. MNC (MultiBox Neural Network for Object Detection) 21. MR-CNN (Multi-Region CNN) 22. L-CNN (Localization CNN) 23. RON (Reverse Connection with Objectness) 24. ML-CNN (Multiple Localization CNN) 25. STDN (Spatial Transformer Detector Network) 26. GAN-based object detection models (e.g. ODIN, Boundary-Seeking GAN) 27. 3D object detection models (e.g. PointRCNN, VoteNet) 28. Graph-based object detection models (e.g. Graph RCNN, GIN) 29. Transformers for object detection (e.g. DETR, ViT-OD) 30. Meta-learning for object detection (e.g. MetaAnchor, Meta R-CNN) 31. Hierarchical models for object detection (e.g. H-RCNN, HD-CNN) 32. Adversarial training for object detection (e.g. AdvEnt, ATOD) 33. Semi-supervised object detection (e.g. SSL-detection, S3D) 34. Weakly-supervised object detection (e.g. W-TALC, WSDDN) 35. Few-shot object detection (e.g. FSOD, F-RCNN) 36. Zero-shot object detection (e.g. ZSD-Net, ZS-OD) 37. Transfer learning for object detection (e.g. TLD, TLOD) 38. Multi-task learning for object detection (e.g. MTDNN, M2Det) 39. Knowledge distillation for object detection (e.g. KD-RCNN, DistillObjDet) 40. Domain adaptation for object detection (e.g. DANN, AdaDet) 41. Active learning for object detection (e.g. AL-RCNN, ALOD) 42. Online learning for object detection (e.g. OL-RCNN, OLEO) 43. Ensemble models for object detection (e.g. EfficientDet, E-RCNN) 44. Neural architecture search for object detection (e.g

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值