[深度大牛]·计算机视觉王者何凯明

补充推荐阅读:

1.『带你学AI』带你学AI与TensorFlow2实战之入门初探:如何速成深度学习开发

2.[深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88)

3.[深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)

4.笔者深度学公众号《极简AI》:

极简AI公众号

极简AI公众号

计算机视觉王者何凯明

2017年10月 22 日到10月29日,两年一度的计算机视觉国际顶级会议 International Conference on Computer Vision(ICCV 2017)在意大利威尼斯开幕。其中最佳论文和最佳学生论文奖,又被何凯明大神再度包揽!

这位为国争光的何凯明是谁?为何被通称为“大神”?

何凯明本人

沉稳的素质让他成为“别人家的孩子”

何凯明可谓是少年成名,因为他是万千学生和家长都曾“膜拜”的“别人家的孩子”——高考状元。

能从万千学子中脱颖而出,在2000年那个年代,并不完全是靠“比贫困地区更优异的教学质量和环境”,更多的是自身的努力。作为2003年广东省理科高考状元,何凯明的高考成就也许更多是因为他的沉稳耐心的性格。

少年时,何凯明没有把一切都抛弃而只顾高考,他年纪轻轻的时候就进入了少年宫学习,他选择了学习绘画。画画最需要耐得住性子,而何凯明却能一下午甚至大半天都坐在写生台前,慢慢画自己想画的。

何凯明学习文化课也和作画一般,非常耐得住。据他的班主任说,何凯明的成绩非常稳定,也很扎实,发挥非常的稳定。在中学读书期间就获得过全国物理竞赛和省化学竞赛的一等奖。

一路优秀的何凯明也走上了报送之路,在高考前,他就已经被确定报送清华大学。不过何凯明仍然参加了高考,凭着扎实的基础和稳定的发挥,何凯明的高考成绩比平时更出色,不仅超出了平时的水准,而且一举拿下了理科状元榜首!

原本何凯明报送清华大学是机械工程及其自动化专业,但凭实力进入清华的何凯明,又一次做出了不一般的选择,他选择了基础科学班。基础科学班是清华大学于1998年开始设立的为培养数学、物理等基础科学培养人才的尖子班,课程压力大,同时要学习数学系、物理系的大部分基础课程。

在大学期间,何凯明把沉稳发挥到了极致,专心于自己的学业,不仅在2003至2005年期间,连续三年都获得了奖学金,而且还有时间进入了微软亚洲研究院实习。

本科毕业后,何凯明继续精修,他选择了去香港中文大学攻读研究生,在这期间,他的第一篇论文,《Single ImageHaze Removalusing Dark Channel Prior》,被计算机视觉领域顶级会议CVPR接收并被评为年度最佳论文。同时,由于在微软亚洲研究院的研究工作,何凯明还获得了微软亚洲研究院的奖学金。

最佳论文得主

曾经的优等生做的研究“无一例外都没有成功”

然而,其实没有谁的成功是随随便便或者一帆风顺的。聪明如何凯明,也是如此。他虽然顶着高考状元的身份加入了清华大学,但是在专业学习上也不是“学神”似的随便两下就拿到奖学金。

更明显的是他在微软亚洲研究院的经历。由于兴趣,何凯明在微软亚洲实验室选择的是视觉计算组,这个给他带来了巨大的挑战。虽然他曾因为兴趣也在大学的时候选修过计算机图形图像的相关课程,然而,并不是科班出身的他,这些兴趣知识完全不足以应对在微软亚洲研究院的研究工作。

他曾经回忆起那段日子,这样表达当时的困扰:“在阅读文章的时候,我常常都不知道哪些是大家都在用的方法,哪些才是作者的贡献。对我来说,我看见的每一样东西都是新的。”

可想而知,他当时是什么懵逼状态。

可是,那又能怎么办呢?只能继续发挥稳定而刻苦的学习精神了。据悉,在其实习的头一年里,何恺明在导师孙剑的指导下,曾经做过些许不同的课题,但是无一例外都没有成功。

无一例外都没有成功,这对一个曾经的高考状元来说,得是多大的打击?

可是何凯明没有放弃,他除了发挥他的坚毅忍耐的学习精神,而且深深爱上了研究。这不,他和团队在2015年末举办的ImageNet图像识别大赛中,以“图像识别深度差残学习”系统傲立群雄。

后来,他还写了一篇让中国人为之骄傲的论文,他一篇关于图像去雾的论文,得到了三个审稿人最高的评分,同时恺明在迈阿密的演讲被观众认为是那届CVPR上最有趣的演讲。

这是中国人首次在CVPR获此殊荣,是华人的骄傲,而且人人都认为他这份Best Paper Award的奖项来得当之无愧。

然而,谁知道在论文写作的过程中,何凯明有多痛苦呢?他不仅经常和自己吵架,反复质问自己的观点是否正确,是否合理。好不容易说服了自己,还会遭到孙剑的再度质疑……

让何凯明出名的图像去雾研究

因为热爱,所以一次又一次选择走研究的路

这位大神其实与旷视科技Face++的还大有联系,他们曾经都是一个坑的战友,在微软亚洲研究院还是一个小组,他们还有共同的成绩:“残差网络”。对于这个成绩,孙剑在接受采访时,曾这样表示:

“要说一下做出这个残差网络完全是团队,何凯明、张祥雨、任少卿和我的集体智慧结晶,缺少任何一人都不敢说能走得到这一步,中间经历很多的失败和曲折。我深感能把我们 4 个不同技能的人凑在一起,打下一个「大怪兽」的幸运;和他们在一起忘我的研究过程是我研究生涯中最难忘的经历之一。”

与孙剑的选择不同,何凯明貌似还走得是那条学院路。并且,进一步地发扬光大。

他选择了去Facebook,担任其AI 实验室研究科学家,选择了进一步走学术之路。

在Facebook AI 实验室研究期间,何凯明仍然醉心于研究,而且颇有建树。

现在,他的最新研究成果MaskR-CNN公布,这是一个概念上简单,灵活,而且通用的对象实例分割框架,在 COCO 的实例分割,边界框对象检测,人物关键点检测 3个任务上均优于现有的单一模型。

除了图像去雾这个领域的成就,何凯明还在默默地继续耕耘。在今年的ICCV中,Facebook有15篇论文被收录,其中五分之一都有何恺明的名字,有多达三篇论文被收录。

 

何凯明和孙剑曾是伙伴

有人这样表示,同行的孙剑选择了加盟企业,而何凯明似乎还在不知人间疾苦地奋斗在研究领域,道不相同但同样的是为领域及行业所做的贡献。这个说话有理,孙剑那种是真正的博士,何凯明这样的博士也可以叫做真正的Doctor。

 

欢迎大家关注小宋公众号《极简AI》带你学深度学习:

基于深度学习的理论学习与应用开发技术分享,笔者会经常分享深度学习干货内容,大家在学习或者应用深度学习时,遇到什么问题也可以与我在上面交流知无不答。

出自CSDN博客专家&知乎深度学习专栏作家@小宋是呢

### 关于《王者荣耀》游戏的图像处理与深度学习应用研究 #### 深度强化学习的应用背景 在电子竞技领域,《王者荣耀》作为一款热门MOBA手游,其复杂多变的游戏环境为人工智能提供了理想的测试平台。相较于传统棋盘游戏或街机游戏,这类多人在线战斗竞技场(MOBA)游戏拥有更为庞大且动态变化的状态空间和行动选项集[^2]。 #### 技术挑战 针对如此高维度的数据流进行有效分析成为一大难题。为了克服这些障碍,研究人员引入了一系列创新性的解决方案,比如采用Actor-Critic架构下的PPO算法改进版本——Dual-Clip PPO,该方法不仅提高了模型收敛速度还增强了稳定性;另外还有诸如控制依赖解耦、动作屏蔽机制等特色设计用于优化决策过程中的效率与准确性。 #### 图像识别技术的支持作用 除了上述提到的核心算法外,在实际应用场景中还需要借助先进的计算机视觉技术来进行实时画面捕捉与解析工作。例如利用YOLO系列目标检测框架(如YOLOv5),可以快速定位并跟踪屏幕上的关键元素位置信息,从而辅助AI更好地理解和响应当前局势发展状况[^5]。 ```python import torch from yolov5 import YOLOv5 model = YOLOv5('yolov5s.pt') # 加载预训练权重文件 results = model.detect(image_path='game_screenshot.png') for result in results.xyxy[0]: print(f'Object detected at {result[:4].tolist()} with confidence score {result[-2]} and class id {int(result[-1])}') ``` 此段代码展示了如使用YOLOv5库加载已有的模型并对一张名为`game_screenshot.png`的游戏截图执行物体检测操作,输出每个被发现的目标的位置坐标、置信度分数以及类别编号。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宋是呢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值