根据窗口,分为四个部分讲。后面小括号的灰色字是链接,可以点进去看。
1,Neural Network
这里显示的是输入大小,中间层数量以及每层的神经元个数。
2,Algorithms
Data Division:Random。这表示使用随机指数将目标分成三组,分别作为train,validation,test。
Training:RProp。这表示学习训练函数。
Performance:Mean Squared Error。这表示性能用均方误差来表示。
Calculations: MEX。暂时没发现用处。
3,Progress
Epoch:迭代次数。
Time:运行时间。
Performance:训练数据集的性能。
Gradient:梯度。
Validation Checks:最大验证失败次数。(解释:比如默认是6,则系统判断这个验证集误差是否在连续6次检验后不下降,如果不下降或者甚至上升,说明training set训练的误差已经不再减小,没有更好的效果了,这时再训练就没必要了,就停止训练,不然可能陷入过拟合。)
4,Plots
Performance:这里可以点进去,看train, validation和test的性能。
Training State:记录Gradient和Validation Checks。
Regression:通过绘制回归线来测量神经网络对应数据的拟合程度。
补充:后面小括号的灰色字是链接,可以点进去看。