中文的翻译有点乱,大致是这样的:Precision(查准率,精确率),Recall(查全率,召回率),Accuracy(准确率)。下面提到这三个名词都用英文表示。
从一个例子入手:我们训练了一个识猫模型,送一张图片给模型,模型就能告诉你该图片是否有猫。目标是找出所有有猫图片。
下面送100张有猫的图片,和100张无猫的图片给模型。假设预测的结果如下:
例子 | 图片有猫 | 图片没有猫 |
---|---|---|
模型识别有猫(Positive) | 90 | 5 |
模型识别没有猫(Negative) | 10 | 95 |
下面定义四个参数:
TP(True Positives):模型识别有猫,实际图片有猫。在上面例子中为90
FP(False Positives):模型识别有猫,实际图片没有猫。在上面例子中为5
TN(True Negatives):模型识别没有猫,实际图片没有猫。在上面例子中为95
FN(False Negatives):模型识别没有猫,实际图片有猫。在上面例子中为10
1, P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP 表示“正确被识别到有猫的图片”占““所有被识别到有猫的图片”的比例。该例为: 90 90 + 5 \frac{90}{90+5} 90+590
2, R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP 表示““正确被识别到有猫的图片”占““所有含有猫的图片”的比例。该例为: 90 90 + 10 \frac{90}{90+10} 90+1090
3, A c c u r a c y = T P + T N T P + F P + T N + F N Accuracy = \frac{TP+TN}{TP+FP+TN+FN} Accuracy=TP+FP+TN+FNTP+TN 表示“模型预测正确的比例。该例为: 90 + 95 90 + 5 + 95 + 10 \frac{90+95}{90+5+95+10} 90+5+95+1090+95