详解Precision(查准率,精确率),Recall(查全率,召回率),Accuracy(准确率)

中文的翻译有点乱,大致是这样的:Precision(查准率,精确率),Recall(查全率,召回率),Accuracy(准确率)。下面提到这三个名词都用英文表示。
  从一个例子入手:我们训练了一个识猫模型,送一张图片给模型,模型就能告诉你该图片是否有猫。目标是找出所有有猫图片。
  下面送100张有猫的图片,和100张无猫的图片给模型。假设预测的结果如下:

例子图片有猫图片没有猫
模型识别有猫(Positive)905
模型识别没有猫(Negative)1095

下面定义四个参数:
TP(True Positives):模型识别有猫,实际图片有猫。在上面例子中为90
FP(False Positives):模型识别有猫,实际图片没有猫。在上面例子中为5
TN(True Negatives):模型识别没有猫,实际图片没有猫。在上面例子中为95
FN(False Negatives):模型识别没有猫,实际图片有猫。在上面例子中为10

1, P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP 表示“正确被识别到有猫的图片”““所有被识别到有猫的图片”的比例。该例为: 90 90 + 5 \frac{90}{90+5} 90+590

2, R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP 表示““正确被识别到有猫的图片”““所有含有猫的图片”的比例。该例为: 90 90 + 10 \frac{90}{90+10} 90+1090

3, A c c u r a c y = T P + T N T P + F P + T N + F N Accuracy = \frac{TP+TN}{TP+FP+TN+FN} Accuracy=TP+FP+TN+FNTP+TN 表示“模型预测正确的比例。该例为: 90 + 95 90 + 5 + 95 + 10 \frac{90+95}{90+5+95+10} 90+5+95+1090+95

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值