VGG论文学习笔记

原作地址:https://arxiv.org/pdf/1409.1556.pdf

参考链接:https://blog.csdn.net/abc_138/article/details/80568450

在第2章中,主要是介绍了一些网络的细节,原作作者共尝试了6个层数不同的网络结构(在2.2节中有详细介绍),建立了11~19层的不同网络,如下图1所示,在2.3中作者相当于是介绍了本文中的主要创新点:更小的卷积核(3*3)、引入了1*1的卷积核。

在第三章中主要是介绍了训练中的细节,3.1节中介绍了训练过程中使用的的优化方法及超参数(batch_size/lr/L2等)设置的值、网络中参数的初始化过程、训练图片的size处理的方法(单尺度、多尺度);3.2节中主要介绍了在测试过程中对图片size的处理方法(单尺度、多尺度以及FC层变为全卷积层)。

在第四章中从单尺度、多尺度等的角度对比评估了结果。

(最后附上自己的笔记,见图2、3、4,里面对文章的内容进行了总结和摘录,当然想看翻译和原文的朋友们可以直接打开顶部的链接)

图1 原作中的6种不同网络结构​​​

 

图2 

 

图3
图4

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值