Signed Distance Functions(符号距离函数)

写在最前面:

本文只是对“Level Set Method and Dynamic implict Surfaces”这个文章的翻译,和添加自己的一点点的理解

正文开始:

1 Introduction

在我们之前的所有内容中,对于整个符号特征函数(我自己把它看成度量函数,通过的位置度量结果的正负)

我们其实没有详细的讨论这个函数到底需要满足什么样的条件。接下来我们讲继续讨论

度量函数有一个必须满足的条件:

2 Distance Functions

我们来定义距离函数的公式:

旨在找到一个属于边界的点,同时这点必须是边界上所有点中,离最近的点。从而计算他们两者之间的距离

当我们找到了这点,此时为了做区分我们将其命名为:。这是我们以之间的距离做半径画圆,即途中所示的大圆。这时候我们能保证边界上其他比远的点不会出现在这个大圆之上或者之内。

我们在以组成的半径线段之上取一个点,以之间的半径画圆,我们能够保证,那些离更近的点也一定在这个小圆内。

因为之间所构成的半径一定是最短的,换句话说就是变化最快的,因此我们引入梯度的概念,又因为我们讨论的都是欧几里得空间内的点,所以可以自然而然得到:

只要边界上不出现两个或者以上的最近点,以上的公式论述都是成立的。但是,这个多个等距点的情况其实是存在的。

3 Signed Distance Functions

符号距离函数

1. 度量函数的绝对值,就是距离函数

2.度量函数的正负,就是点在边界内外位置的判断。

当没有等值点时,成立

边界上最近点的计算公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值