深度学习模型训练优化算法 神经网络模型训练 数据集 样本少 如何判断和解决共线性问题 权值初始化方法 防止梯度下降陷入局部最优解 如何考虑特征选择 梯度消失、爆炸的解决方案

深度学习模型训练优化算法

神经网络模型是一种模拟人类实际神经网络的数学方法,通过大量的简单处理单元(神经元)广泛互连来形成复杂的网络系统。它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络模型的基础在于神经元,其工作原理是通过学习和适应数据的模式和特征,从而进行预测、分类、识别等任务。

常见的神经网络模型包括前馈神经网络、卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等。前馈神经网络是最基本的神经网络模型,由一个或多个全连接层组成,适用于处理输入和输出之间的静态关系。卷积神经网络主要应用于图像和视频处理任务,通过卷积层、池化层和全连接层来提取图像特征并进行分类或回归。循环神经网络适用于处理序列数据,如文本、语音等,通过循环连接来捕捉序列中的时序依赖关系。长短时记忆网络是一种特殊的循环神经网络,通过引入门控机制来解决传统RNN中的梯度消失和梯度爆炸问题,适用于处理长序列数据。

在这里插入图片描述

神经网络模型的工作原理主要可以分为前向传播和反向传播两个阶段。在前向传播阶段,输入数据通过网络的输入层,逐层传递到输出层,每个神经元都会根据自身的权重和输入值进行计算,并将结果传递给下一层神经元。在反向传播阶段,网络会根据预测结果与实际输出之间的误差来调整各神经元之间的权重,通过多次迭代优化模型,提高预测和识别准确性。

神经网络模型在多个领域都有广泛的应用,如自然语言处理、数据分析、图像识别、语音识别等。它可以实现自动回复、问题归类、预测客户贷款风险、情感分析、语义表示学习以及对话系统设计等功能。

需要注意的是,神经网络模型的训练和优化是一个复杂且多面的过程,需要综合考虑多个因素,如数据集大小、特征选择、模型复杂度、学习率等。在实际应用中,需要根据具体问题和数据集的特点来选择合适的算法、策略和方法。

  • 深度学习模型训练优化算法

深度学习模型训练优化算法主要用于更新模型的参数,以最小化损失函数。常见的优化算法包括:

梯度下降(SGD):最基本的优化算法,通过计算损失函数对参数的梯度,然后按照梯度的反方向更新参数。
动量(Momentum):在SGD的基础上引入动量项,模拟物理中的动量概念,帮助算法在相关方向上加速,抑制振荡。
Adam和RMSprop:自适应学习率的优化算法,它们根据参数的历史梯度来调整每个参数的学习率。

  • 神经网络模型训练算法

神经网络模型训练算法主要包括前向传播、计算损失函数、反向传播和更新参数四个步骤:

前向传播:输入数据通过神经网络得到预测结果。
计算损失函数:比较预测结果和真实标签,计算损失值。
反向传播:根据损失函数计算梯度,通过链式法则将梯度从输出层传播到输入层。
更新参数:使用优化算法根据梯度更新网络参数。

  • 实战中的常见问题和解决办法

  • 过拟合与欠拟合:

问题:过拟合是模型在训练数据上表现良好,但在测试数据上表现较差;欠拟合则是模型在训练数据上表现也较差。

解决办法:调整模型复杂度、增加数据量、使用正则化、Dropout等技术。

  • 梯度消失与爆炸:

问题:在深度网络中,梯度可能变得非常小或非常大,导致模型训练困难。
解决办法:使用合适的激活函数(如ReLU)、批标准化、残差结构等。

  • 局部最优解:

问题:梯度下降算法可能陷入局部最优解,而非全局最优解。
解决办法:使用更复杂的模型结构、调整学习率策略、使用多种优化算法等。

  • 样本不均衡:

问题:数据集中某些类别的样本数量远多于其他类别。
解决办法:使用过采样、欠采样、合成新样本等技术来平衡类别分布。

  • 特征选择:

问题:特征数量过多或存在无关特征,影响模型性能。
解决办法:使用特征选择算法(如基于模型的特征选择、基于相关性的选择等)来筛选出最重要的特征。

  • 计算资源和时间限制:

问题:大型模型训练需要大量的计算资源和时间。
解决办法:使用分布式训练、模型压缩、剪枝等技术来减少资源消耗和时间成本。

如何解决训练样本少的问题

目前大部分的深度学习模型仍然需
要海量的数据支持。例如 ImageNet 数据就拥有1400多万的图片。而现实生产环境中,数据集通常较小,只有几万甚至几百个样本。这时候,如何在这种情况下应用深度学习呢?
(1)利用预训练模型进行迁移微调(fine-tuning),预训练模型通常在特征上拥有很好的语义表达。此时,只需将模型在小数据集上进行微调就能取得不错的效果。这也是目前大部分小数据集常用的训练方式。视觉领域内,通常会ImageNet上训练完成的模型。自然语言处理领域,也有BERT模型等预训练模型可以使用。
  
(2)单样本或者少样本学习(one-shot,few-shot learning),这种方式适用于样本类别远远大于样本数量的情况等极端数据集。例如有1000个类别,每个类别只提供1-5个样本。少样本学习同样也需要借助预训练模型,但有别于微调的在于,微调通常仍然在学习不同类别的语义,而少样本学习通常需要学习样本之间的距离度量。例如孪生网络(Siamese Neural Networks)就是通过训练两个同种结构的网络来判别输入的两张图片是否属于同一类。
​ 上述两种是常用训练小样本数据集的方式。此外,也有些常用的手段,例如数据集增强、正则或者半监督学习等方式来解决小样本数据集的训练问题。

深度学习是否能胜任所有数据集?

深度学习并不能胜任目前所有的数据环境,以下列举两种情况:

(1)深度学习能取得目前的成果,很大一部分原因依赖于海量的数据集以及高性能密集计算硬件。因此,当数据集过小时,需要考虑与传统机器学习相比,是否在性能和硬件资源效率更具有优势。
(2)深度学习目前在视觉,自然语言处理等领域都有取得不错的成果。这些领域最大的特点就是具有局部相关性。例如图像中,人的耳朵位于两侧,鼻子位于两眼之间,文本中单词组成句子。这些都是具有局部相关性的,一旦被打乱则会破坏语义或者有不同的语义。所以当数据不具备这种相关性的时候,深度学习就很难取得效果。

有没有可能找到比已知算法更好的算法?

在最优化理论发展中,有个没有免费午餐的定律,其主要含义在于,在不考虑具体背景和细节的情况下,任何算法和随机猜的效果期望是一样的。即,没有任何一种算法能优于其他一切算法,甚至不比随机猜好。深度学习作为机器学习领域的一个分支同样符合这个定律。所以,虽然目前深度学习取得了非常不错的成果,但是我们同样不能盲目崇拜。

优化算法本质上是在寻找和探索更符合数据集和问题的算法,这里数据集是算法的驱动力,而需要通过数据集解决的问题就是算法的核心,任何算法脱离了数据都会没有实际价值,任何算法的假设都不能脱离实际问题。因此,实际应用中,面对不同的场景和不同的问题,可以从多个角度针对问题进行分析,寻找更优的算法。

什么是共线性,如何判断和解决共线性问题?

对于回归算法,无论是一般回归还是逻辑回归,在使用多个变量进行预测分析时,都可能存在多变量相关的情况,这就是多重共线性。共线性的存在,使得特征之间存在冗余,导致过拟合。

共线性问题主要出现在回归算法中,当多个特征之间存在高度相关性时,会导致模型的稳定性下降。可以通过计算相关性系数、方差膨胀因子(VIF)或进行条件系数检验等方法来判断是否存在共线性。解决共线性问题的方法包括PCA降维、逐步回归法和LASSO回归等。

常用判断是否存在共线性的方法有:

(1)相关性分析。当相关性系数高于0.8,表明存在多重共线性;但相关系数低,并不能表示不存在多重共线性;

(2)方差膨胀因子VIF。当VIF大于5或10时,代表模型存在严重的共线性问题;

(3)条件系数检验。 当条件数大于100、1000时,代表模型存在严重的共线性问题。

通常可通过PCA降维、逐步回归法和LASSO回归等方法消除共线性。

共线性,也被称为多重共线性,是线性回归模型中的一个重要概念。它指的是模型中的解释变量(即自变量)之间由于存在精确或高度相关关系,导致模型估计失真或难以准确估计。这种情况通常是由于经济数据的限制或模型设计不当导致的。需要注意的是,完全共线性的情况并不多见,实际中更常出现的是一定程度上的共线性,即近似共线性。

判断共线性的方法有多种,包括:

相关系数矩阵:通过计算自变量之间的相关系数并绘制相关系数矩阵图表来判断。若多个自变量之间的相关系数非常高,则可能存在共线性问题。
方差膨胀因子(VIF):计算每个自变量与其他所有自变量的相关系数的平方和,并将其除以1减去该自变量与其他所有自变量的相关系数的平方和。若VIF大于5或10,则可能存在共线性问题。

经验法:通过宏观经验进行简单判断,如模型的R方较高但变量不显著,或模型结果不合理,可能暗示存在多重共线性。
解决共线性问题的方法有:

去除高度相关的变量:基于相关性和业务背景知识,去除高度相关的自变量。
主成分分析(PCA):通过将高维数据映射到低维空间,降低自变量之间的相关性。

正则化方法:如岭回归、Lasso回归等,通过对参数施加惩罚来减少共线性问题。
在实际操作中,需要根据数据的具体情况和业务需求,选择合适的判断和解决共线性问题的方法。

同时,也需要注意,解决共线性问题后,模型的系数估计值和实际意义可能会发生变化。因此,在调整模型时,需要综合考虑各种因素,确保模型的准确性和可靠性。

权值初始化方

法有哪些?

在深度学习的模型中,从零开始训练时,权重的初始化有时候会对模型训练产生较大的影响。良好的初始化能让模型快速、有效的收敛,而糟糕的初始化会使得模型无法训练。

权值初始化是神经网络训练的一个重要步骤,其好坏直接影响到模型的训练效果。常见的权值初始化方法包括随机初始化、零初始化、Xavier初始化和He初始化等。不同的初始化方法适用于不同的网络结构和任务,需要根据实际情况进行选择。

目前,大部分深度学习框架都提供了各类初始化方式,其中一般常用的会有如下几种:
1. 常数初始化(constant)

​ 把权值或者偏置初始化为一个常数。例如设置为0,偏置初始化为0较为常见,权重很少会初始化为0。TensorFlow中也有zeros_initializer、ones_initializer等特殊常数初始化函数。

2. 高斯初始化(gaussian)

​ 给定一组均值和标准差,随机初始化的参数会满足给定均值和标准差的高斯分布。高斯初始化是很常用的初始化方式。特殊地,在TensorFlow中还有一种截断高斯分布初始化(truncated_normal_initializer),其主要为了将超过两个标准差的随机数重新随机,使得随机数更稳定。

3. 均匀分布初始化(uniform)

​ 给定最大最小的上下限,参数会在该范围内以均匀分布方式进行初始化,常用上下限为(0,1)。

4. xavier 初始化(uniform)

​ 在batchnorm还未出现之前,要训练较深的网络,防止梯度弥散,需要依赖非常好的初始化方式。xavier 就是一种比较优秀的初始化方式,也是目前最常用的初始化方式之一。其目的是为了使得模型各层的激活值和梯度在传播过程中的方差保持一致。本质上xavier 还是属于均匀分布初始化,但与上述的均匀分布初始化有所不同,xavier 的上下限将在如下范围内进行均匀分布采样:
[ − 6 n + m , 6 n + m ] [-\sqrt{\frac{6}{n+m}},\sqrt{\frac{6}{n+m}}] [n+m6 ,n+m6 ]
​ 其中,n为所在层的输入维度,m为所在层的输出维度。

6. kaiming初始化(msra 初始化)

​ kaiming初始化,在caffe中也叫msra 初始化。kaiming初始化和xavier 一样都是为了防止梯度弥散而使用的初始化方式。kaiming初始化的出现是因为xavier存在一个不成立的假设。xavier在推导中假设激活函数都是线性的,而在深度学习中常用的ReLu等都是非线性的激活函数。而kaiming初始化本质上是高斯分布初始化,与上述高斯分布初始化有所不同,其是个满足均值为0,方差为2/n的高斯分布:
[ 0 , 2 n ] [0,\sqrt{\frac{2}{n}}] [0,n2 ]
​ 其中,n为所在层的输入维度。

除上述常见的初始化方式以外,不同深度学习框架下也会有不同的初始化方式,读者可自行查阅官方文档。

如何防止梯度下降陷入局部最优解?

为了防止梯度下降陷入局部最优解,可以采取一些策略,如使用更深的网络结构、数据增强、预训练网络参数、正则化以及自适应学习率等方法。这些方法可以提高模型的搜索空间,减少过拟合的风险,从而更好地避免陷入局部最优解。

梯度下降法(GD)及其一些变种算法是目前深度学习里最常用于求解凸优化问题的优化算法。神经网络很可能存在很多局部最优解,而非全局最优解。 为了防止陷入局部最优,通常会采用如下一些方法,当然,这并不能保证一定能找到全局最优解,或许能得到一个比目前更优的局部最优解也是不错的:

(1)stochastic GD /Mini-Batch GD

​ 在GD算法中,每次的梯度都是从所有样本中累计获取的,这种情况最容易导致梯度方向过于稳定一致,且更新次数过少,容易陷入局部最优。而stochastic GD是GD的另一种极端更新方式,其每次都只使用一个样本进行参数更新,这样更新次数大大增加也就不容易陷入局部最优。但引出的一个问题的在于其更新方向过多,导致不易于进一步优化。Mini-Batch GD便是两种极端的折中,即每次更新使用一小批样本进行参数更新。Mini-Batch GD是目前最常用的优化算法,严格意义上Mini-Batch GD也叫做stochastic GD,所以很多深度学习框架上都叫做SGD。
**(2)动量 **
​ 动量也是GD中常用的方式之一,SGD的更新方式虽然有效,但每次只依赖于当前批样本的梯度方向,这样的梯度方向依然很可能很随机。动量就是用来减少随机,增加稳定性。其思想是模仿物理学的动量方式,每次更新前加入部分上一次的梯度量,这样整个梯度方向就不容易过于随机。一些常见情况时,如上次梯度过大,导致进入局部最小点时,下一次更新能很容易借助上次的大梯度跳出局部最小点。

**(3)自适应学习率 **

​ 无论是GD还是动量重点优化角度是梯度方向。而学习率则是用来直接控制梯度更新幅度的超参数。自适应学习率的优化方法有很多,例如Adagrad和RMSprop。两种自适应学习率的方式稍有差异,但主要思想都是基于历史的累计梯度去计算一个当前较优的学习率。

为什么需要激活函数?

激活函数在神经网络中扮演着至关重要的角色,主要有以下几个原因:

引入非线性特性:神经网络中的线性层(如全连接层)只能学习线性关系。然而,现实世界中的数据往往存在非线性关系。激活函数能够引入非线性因素,使得神经网络能够学习和表示复杂的数据模式。这样,神经网络就能更好地拟合和泛化到实际任务中。

控制输出范围:一些激活函数可以将神经元的输出限制在特定的范围内。例如,Sigmoid函数将输出限制在0到1之间,Tanh函数将输出限制在-1到1之间。这种限制有助于神经网络的稳定性和收敛性。

影响梯度消失和爆炸:激活函数的选择会直接影响神经网络在训练过程中的梯度传播。某些激活函数(如Sigmoid和Tanh)在输入值过大或过小时,其导数会变得非常接近于零,导致梯度消失问题。而ReLU等激活函数则能有效缓解这一问题,因为它们在输入为正时具有恒定的导数。

表达数据的多样性:不同的激活函数具有不同的形状和特性,可以表达数据的不同方面。通过选择合适的激活函数,神经网络可以更好地捕捉数据的内在规律和特征。

激活函数在神经网络中起着增加非线性、控制输出范围、影响梯度传播以及表达数据多样性的重要作用。它们使得神经网络能够学习并表示复杂的数据模式,从而在实际任务中取得更好的性能。

(1)非线性:即导数不是常数。这个条件是多层神经网络的基础,保证多层网络不退化成单层线性网络。这也是激活函数的意义所在。

(2)几乎处处可微:可微性保证了在优化中梯度的可计算性。传统的激活函数如sigmoid等满足处处可微。对于分段线性函数比如ReLU,只满足几乎处处可微(即仅在有限个点处不可微)。对于SGD算法来说,由于几乎不可能收敛到梯度接近零的位置,有限的不可微点对于优化结果不会有很大影响[1]。

(3)计算简单:非线性函数有很多。极端的说,一个多层神经网络也可以作为一个非线性函数,类似于Network In Network[2]中把它当做卷积操作的做法。但激活函数在神经网络前向的计算次数与神经元的个数成正比,因此简单的非线性函数自然更适合用作激活函数。这也是ReLU之流比其它使用Exp等操作的激活函数更受欢迎的其中一个原因。

(4)非饱和性(saturation):饱和指的是在某些区间梯度接近于零(即梯度消失),使得参数无法继续更新的问题。最经典的例子是Sigmoid,它的导数在x为比较大的正值和比较小的负值时都会接近于0。更极端的例子是阶跃函数,由于它在几乎所有位置的梯度都为0,因此处处饱和,无法作为激活函数。ReLU在x>0时导数恒为1,因此对于再大的正值也不会饱和。但同时对于x<0,其梯度恒为0,这时候它也会出现饱和的现象(在这种情况下通常称为dying ReLU)。Leaky ReLU[3]和PReLU[4]的提出正是为了解决这一问题。

(5)单调性(monotonic):即导数符号不变。这个性质大部分激活函数都有,除了诸如sin、cos等。个人理解,单调性使得在激活函数处的梯度方向不会经常改变,从而让训练更容易收敛。

(6)输出范围有限:有限的输出范围使得网络对于一些比较大的输入也会比较稳定,这也是为什么早期的激活函数都以此类函数为主,如Sigmoid、TanH。但这导致了前面提到的梯度消失问题,而且强行让每一层的输出限制到固定范围会限制其表达能力。因此现在这类函数仅用于某些需要特定输出范围的场合,比如概率输出(此时loss函数中的log操作能够抵消其梯度消失的影响[1])、LSTM里的gate函数。

(7)接近恒等变换(identity):即约等于x。这样的好处是使得输出的幅值不会随着深度的增加而发生显著的增加,从而使网络更为稳定,同时梯度也能够更容易地回传。这个与非线性是有点矛盾的,因此激活函数基本只是部分满足这个条件,比如TanH只在原点附近有线性区(在原点为0且在原点的导数为1),而ReLU只在x>0时为线性。这个性质也让初始化参数范围的推导更为简单[5][4]。额外提一句,这种恒等变换的性质也被其他一些网络结构设计所借鉴,比如CNN中的ResNet[6]和RNN中的LSTM。

(8)参数少:大部分激活函数都是没有参数的。像PReLU带单个参数会略微增加网络的大小。还有一个例外是Maxout[7],尽管本身没有参数,但在同样输出通道数下k路Maxout需要的输入通道数是其它函数的k倍,这意味着神经元数目也需要变为k倍;但如果不考虑维持输出通道数的情况下,该激活函数又能将参数个数减少为原来的k倍。

(9)归一化(normalization):这个是最近才出来的概念,对应的激活函数是SELU[8],主要思想是使样本分布自动归一化到零均值、单位方差的分布,从而稳定训练。在这之前,这种归一化的思想也被用于网络结构的设计,比如Batch Normalization[9]。

常见的损失函数有哪些?

机器学习通过对算法中的目标函数进行不断求解优化,得到最终想要的结果。分类和回归问题中,通常使用损失函数或代价函数作为目标函数。

损失函数用来评价预测值和真实值不一样的程度。通常损失函数越好,模型的性能也越好。

损失函数可分为经验风险损失结构风险损失。经验风险损失是根据已知数据得到的损失。结构风险损失是为了防止模型被过度拟合已知数据而加入的惩罚项。

下面介绍常用的损失函数:
(1)0-1 损失函数
  
如果预测值和目标值相等,值为 0,如果不相等,值为 1:
L ( Y , f ( x ) ) = { 1        ,      Y ≠ f ( x ) , 0        ,      Y = f ( x ) . L(Y,f(x))= \left\{ \begin{array}{} 1\;\;\;,\;\;Y\ne f(x), \\ 0\;\;\;,\;\;Y=f(x). \end{array} \right. L(Y,f(x))={ 1,Y

  • 19
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EwenWanW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值