边界框(bounding box) 目标物体的位置和大小 交并比(Intersection over Union,IoU) 锚框(Anchor box)

本文介绍了目标检测中的关键概念——边界框(bounding box)及其坐标表示,以及交并比(Intersection over Union, IoU)在评估模型性能中的作用。锚框(Anchor box)作为预定义的边界框,用于生成候选区域,帮助模型预测目标位置。锚框大小和形状可通过人为经验、k-means聚类或超参数学习确定。" 84920508,811587,使用Netty实现文件下载,"['Netty', 'Java', '操作系统']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

边界框(bounding box)

在检测任务中,我们需要同时预测物体的类别和位置,因此需要引入一些跟位置相关的概念。通常使用边界框(bounding box,bbox)来表示物体的位置,边界框是正好能包含物体的矩形框。

在目标检测任务中,边界框(bounding box,bbox)是一个非常重要的概念,用于表示图像中目标物体的位置和大小。边界框通常是一个矩形,其四个参数定义了它在图像中的位置:

  1. (x, y):边界框左上角的坐标(通常是相对于图像左上角的像素位置)。
  2. width:边界框的宽度(以像素为单位)。
  3. height:边界框的高度(以像素为单位)。

有时,为了更便于计算,也会使用以下形式来表示边界框:

(x_min, y_min, x_max, y_max):这里 (x_min, y_min) 是边界框左上角的坐标,而 (x_max, y_max) 是右下角的坐标。

在目标检测任务中,模型不仅需要预测图像中是否存在某个类别的物体,还需要预测这些物体的边界框坐标。这通常是通过回归问题来完成的,即模型输出的是边界框的坐标值,这些坐标值会与真实边界框(ground truth bounding box)的坐标值进行比较,以计算损失并更新模型的参数。

此外,为了评估目标检测模型的性能,还需要使用各种指标,如交并比(Intersection over Union,IoU)来度量预测边界框与真实边界框之间的重叠程度。

IoU 是预测边界框与真实边界框交集区域与并集区域的比例,通常用于判断预测是否正确(例如,当 IoU 大于某个阈值时,认为预测是正确的)。

图1 所示,图中3个人分别对应3个边界框。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

图1 边界框

通常表示边界框的位置有两种方式:

  1. ( x 1 , y 1 , x 2 , y 2 ) (x_1, y_1, x_2, y_2) (x1,y1,x2,y2),其中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)是矩形框左上角的坐标, ( x 2 , y 2 ) (x_2, y_2) (x2,y2)是矩形框右下角的坐标。图1 中3个红色矩形框用 x y x y xyxy xyxy格式表示如下:
  • 左: ( 40.93 , 141.1 , 226.99 , 515.73 )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EwenWanW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值