求逆序数

时间限制: 2000 ms  |  内存限制: 65535 KB
难度: 5
描述

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

现在,给你一个N个元素的序列,请你判断出它的逆序数是多少。

比如 1 3 2 的逆序数就是1。

输入
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
每组测试数据的每一行是一个整数N表示数列中共有N个元素(2〈=N〈=1000000)
随后的一行共有N个整数Ai(0<=Ai<1000000000),表示数列中的所有元素。

数据保证在多组测试数据中,多于10万个数的测试数据最多只有一组。
输出
输出该数列的逆序数
样例输入
2
2
1 1
3
1 3 2
样例输出
0
1

    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    const int N=1001000;
    long long c[N],reflect[N], n;
    struct node
    {
        long long val;
        int pos;
    }nd[N];
    bool cmp(node p1,node p2)
    {
        if(p1.val!=p2.val)
            return p1.val<p2.val;
        else return p1.pos<p2.pos;
    }
    long long lowbit(long long x)
    {
        return x&(-x);
    }
   void updata(int x)
    {
        while(x<=n)
        {
            c[x]+=1;
            x+=lowbit(x);
        }
    }
    int getsum(int x)
    {
        int ans=0;
        while(x>0)
        {
            ans+=c[x];
            x-=lowbit(x);
        }
        return ans;
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&nd[i].val);
                nd[i].pos=i;
            }
            sort(nd+1,nd+n+1,cmp);
            for(int i=1;i<=n;i++)
            reflect[nd[i].pos]=i;
            for(int i=1;i<=n;i++) c[i]=0;
            long long ans=0;
            for(int i=1;i<=n;i++)
            {
                updata(nd[i].pos);
                ans+=i-getsum(nd[i].pos);
            }
            printf("%lld\n",ans);
        }
    }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值