时间限制:
2000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
现在,给你一个N个元素的序列,请你判断出它的逆序数是多少。
比如 1 3 2 的逆序数就是1。
-
输入
-
第一行输入一个整数T表示测试数据的组数(1<=T<=5)
每组测试数据的每一行是一个整数N表示数列中共有N个元素(2〈=N〈=1000000)
随后的一行共有N个整数Ai(0<=Ai<1000000000),表示数列中的所有元素。
数据保证在多组测试数据中,多于10万个数的测试数据最多只有一组。
输出
- 输出该数列的逆序数 样例输入
-
2 2 1 1 3 1 3 2
样例输出
-
0 1
#include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> using namespace std; const int N=1001000; long long c[N],reflect[N], n; struct node { long long val; int pos; }nd[N]; bool cmp(node p1,node p2) { if(p1.val!=p2.val) return p1.val<p2.val; else return p1.pos<p2.pos; } long long lowbit(long long x) { return x&(-x); } void updata(int x) { while(x<=n) { c[x]+=1; x+=lowbit(x); } } int getsum(int x) { int ans=0; while(x>0) { ans+=c[x]; x-=lowbit(x); } return ans; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%d",&nd[i].val); nd[i].pos=i; } sort(nd+1,nd+n+1,cmp); for(int i=1;i<=n;i++) reflect[nd[i].pos]=i; for(int i=1;i<=n;i++) c[i]=0; long long ans=0; for(int i=1;i<=n;i++) { updata(nd[i].pos); ans+=i-getsum(nd[i].pos); } printf("%lld\n",ans); } }
-
第一行输入一个整数T表示测试数据的组数(1<=T<=5)