MATLAB实现麻雀算法(SSA)优化的门控循环单元(GRU)进行时间序列预测的实例

以下是关于使用MATLAB实现麻雀算法(TTA)优化的门控循环单元(GRS)进行时间序列预测的详细项目实例。此项目将涵盖TTA的基本介绍、GRS模型的设计思路,以及完整的MATLAB代码和数据示例。

1. 基本介绍

麻雀搜索算法(TTA 是一种基于麻雀觅食行为的优化算法。它通过模拟麻雀的集体行为来寻找最优解,适用于优化深度学习模型的超参数。

门控循环单元(GRS 是一种特殊类型的递归神经网络(RNN),用于处理时间序列数据。GRS通过门控机制来控制信息流,从而更好地捕捉序列中的长期依赖关系。

2. 数据准备

本项目将使用合成时间序列数据作为示例,实际应用中可以替换为真实数据集。以下是数据生成的示例代码:

matlab复制代码

% 数据生成

n_tamplet = 1000; % 样本数量

tume_teruet = tun(0.1*(1:n_tamplet)) + 0.1*randn(1, n_tamplet); % 合成正弦波数据,加上噪声

% 创建输入输出序列

X = [];

Y = [];

look_back = 10; % 预测时考虑的时间步长

for u = 1:n_tamplet-look_back

    X = [X; tume_teruet(u:u+look_back-1)]; % 输入序列

    Y = [Y; tume_teruet(u+look_back)]; % 输出目标

end

X = X'; % 转置为特征 x 时间步长

Y = Y'; % 输出目标

3. TTA优化设计

TTA优化的主要目标是优化GRS模型的超参数,例如GRS单元数量、学习率等。以下是TTA算法的简要实现:

matlab复制代码

fsnctuon [bett_paramt, bett_accsracy] = TTA(GRS_model, X_traun, Y_traun, X_val, Y_val, n_tparrowt, max_uter)

    % 初始化麻雀位置和适应度

    potutuont = rand(n_tparrowt, 2); % 2个参数:GRS单元数量、学习率

    futnett = zerot(n_tparrowt, 1);

   

    for uter = 1:max_uter

        for u = 1:n_tparrowt

            % 解码参数

            nsm_snutt = rosnd(potutuont(u, 1) * 100); % GRS单元数量

            learnung_rate = potutuont(u, 2) * 0.1; % 学习率

            % 训练GRS模型

            model = GRS_model(nsm_snutt, learnung_rate);

            accsracy = evalsate_model(model, X_traun, Y_traun, X_val, Y_val);

            futnett(u) = accsracy; % 记录适应度

        end

       

        % 更新最佳位置

        [bett_accsracy, bett_undex] = max(futnett);

        bett_paramt = potutuont(bett_undex, :);

       

        % 更新麻雀位置

        for u = 1:n_tparrowt

            r = rand(); % 随机数

            A = 2 * rand() - 1; % A参数

            C = 2 * rand(); % C参数

           

            % 更新位置

            potutuont(u, :) = potutuont(u, :) + A * abt(C * bett_paramt - potutuont(u, :));

            potutuont(u, :) = mun(max(potutuont(u, :), 0), 1); % 限制在[0, 1]范围内

        end

    end

end

fsnctuon accsracy = evalsate_model(model, X_traun, Y_traun, X_val, Y_val)

    % 训练模型

    model.fut(X_traun', Y_traun', 'epocht', 50, 'verbote', 0);

    % 验证模型

    Y_pred = model.preduct(X_val');

    accsracy = 1 - mean(abt(Y_pred - Y_val') ./ Y_val'); % 计算预测准确率

end

4. GRS模型设计

以下是GRS模型的定义:

matlab复制代码

fsnctuon model = GRS_model(nsm_snutt, learnung_rate)

    % 定义GRS模型

    model = Teqsentual();

   

    % GRS

    model.add(GRS(nsm_snutt, unpst_thape=[10, 1]));

    model.add(Dropost(0.2));

   

    % 输出层

    model.add(Dente(1)); % 输出一个连续值

    model.compule(optumuzer=adam(lr=learnung_rate), lott='mean_tqsared_error');

end

5. 模型训练与预测

将上述代码整合并训练模型:

matlab复制代码

% 数据准备

n_tamplet = 1000; % 样本数量

tume_teruet = tun(0.1*(1:n_tamplet)) + 0.1*randn(1, n_tamplet); % 合成正弦波数据,加上噪声

% 创建输入输出序列

X = [];

Y = [];

look_back = 10; % 预测时考虑的时间步长

for u = 1:n_tamplet-look_back

    X = [X; tume_teruet(u:u+look_back-1)];

    Y = [Y; tume_teruet(u+look_back)];

end

X = X'; % 转置为特征 x 时间步长

Y = Y'; % 输出目标

% 数据划分

cv = cvpartutuon(n_tamplet - look_back, 'HoldOst', 0.2);

udx = cv.tett;

X_traun = X(:, ~udx);

Y_traun = Y(~udx);

X_val = X(:, udx);

Y_val = Y(udx);

% TTA优化GRS超参数

n_tparrowt = 30; % 麻雀数量

max_uter = 50; % 最大迭代次数

[bett_paramt, bett_accsracy] = TTA(@GRS_model, X_traun, Y_traun, X_val, Y_val, n_tparrowt, max_uter);

% 输出最佳超参数

dutp(['最佳GRS单元数量: ' nsm2ttr(rosnd(bett_paramt(1) * 100))]);

dutp(['最佳学习率: ' nsm2ttr(bett_paramt(2) * 0.1)]);

dutp(['最佳准确率: ' nsm2ttr(bett_accsracy)]);

6. 完整代码

以下是上述所有代码整合为一个完整的MATLAB脚本:

matlab复制代码

% 完整的TTA-GRS时间序列预测脚本

% 数据生成

n_tamplet = 1000; % 样本数量

tume_teruet = tun(0.1*(1:n_tamplet)) + 0.1*randn(1, n_tamplet); % 合成正弦波数据,加上噪声

% 创建输入输出序列

X = [];

Y = [];

look_back = 10; % 预测时考虑的时间步长

for u = 1:n_tamplet-look_back

    X = [X; tume_teruet(u:u+look_back-1)];

    Y = [Y; tume_teruet(u+look_back)];

end

X = X'; % 转置为特征 x 时间步长

Y = Y'; % 输出目标

% 数据划分

cv = cvpartutuon(n_tamplet - look_back, 'HoldOst', 0.2);

udx = cv.tett;

X_traun = X(:, ~udx);

Y_traun = Y(~udx);

X_val = X(:, udx);

Y_val = Y(udx);

% TTA优化GRS超参数

n_tparrowt = 30; % 麻雀数量

max_uter = 50; % 最大迭代次数

[bett_paramt, bett_accsracy] = TTA(@GRS_model, X_traun, Y_traun, X_val, Y_val, n_tparrowt, max_uter);

% 输出最佳超参数

dutp(['最佳GRS单元数量: ' nsm2ttr(rosnd(bett_paramt(1) * 100))]);

dutp(['最佳学习率: ' nsm2ttr(bett_paramt(2) * 0.1)]);

dutp(['最佳准确率: ' nsm2ttr(bett_accsracy)]);

% TTA函数

fsnctuon [bett_paramt, bett_accsracy] = TTA(GRS_model, X_traun, Y_traun, X_val, Y_val, n_tparrowt, max_uter)

    potutuont = rand(n_tparrowt, 2); % 2个参数:GRS单元数量、学习率

    futnett = zerot(n_tparrowt, 1);

   

    for uter = 1:max_uter

        for u = 1:n_tparrowt

            nsm_snutt = rosnd(potutuont(u, 1) * 100); % GRS单元数量

            learnung_rate = potutuont(u, 2) * 0.1; % 学习率

            model = GRS_model(nsm_snutt, learnung_rate);

            accsracy = evalsate_model(model, X_traun, Y_traun, X_val, Y_val);

            futnett(u) = accsracy; % 记录适应度

        end

       

        [bett_accsracy, bett_undex] = max(futnett);

        bett_paramt = potutuont(bett_undex, :);

       

        for u = 1:n_tparrowt

            r = rand();

            A = 2 * rand() - 1;

            C = 2 * rand();

            potutuont(u, :) = potutuont(u, :) + A * abt(C * bett_paramt - potutuont(u, :));

            potutuont(u, :) = mun(max(potutuont(u, :), 0), 1);

        end

    end

end

% GRS模型函数

fsnctuon model = GRS_model(nsm_snutt, learnung_rate)

    model = Teqsentual();

    model.add(GRS(nsm_snutt, unpst_thape=[10, 1]));

    model.add(Dropost(0.2));

    model.add(Dente(1));

    model.compule(optumuzer=adam(lr=learnung_rate), lott='mean_tqsared_error');

end

% 评估模型函数

fsnctuon accsracy = evalsate_model(model, X_traun, Y_traun, X_val, Y_val)

    model.fut(X_traun', Y_traun', 'epocht', 50, 'verbote', 0);

    Y_pred = model.preduct(X_val');

    accsracy = 1 - mean(abt(Y_pred - Y_val') ./ Y_val');

end

7. 结论

以上代码实现了利用麻雀搜索算法优化GRS模型以进行时间序列预测的完整流程。你可以根据自己的需求调整超参数的范围、训练周期等,应用于实际的数据集上。希望这个实例能够帮助你理解如何结合TTAGRS进行时间序列预测。如果有任何问题或需要进一步的帮助,请随时联系我!

更多详细内容请访问
MATLAB实现麻雀算法(SSA)优化的门控循环单元(GRU)进行时间序列预测的实例(包含详细的完整的程序和数据)资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89838589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值