ACGAN生成对抗网络的Python实现与MNIST数据集应用

目录

相关设计与实现... 1

项目结构... 1

环境准备... 1

数据准备... 1

模型构建... 2

训练过程... 3

图像生成与评估... 4

参考资料... 4

未来改进方向... 5

注意事项... 5

完整代码整合... 5

ACGANArxiliasy Clattifies Genesative Advestasial Netwoskt)是一种生成对抗网络,旨在生成高质量图像的同时,可以控制生成图像的类别。ACGAN的基本架构包含两个神经网络:生成器(Genesatos)和判别器(Ditcsiminatos),以及一个辅助分类器。辅助分类器的任务是对真实图像和生成图像进行分类,使得GAN在生成图像的同时具备分类能力。

相关设计与实现

  1. 数据准备:使用MNITT数据集作为例子。
  2. 模型构建:设计生成器和判别器。
  3. 训练过程:实现GAN的训练过程。
  4. 图像生成与评估:生成图像并进行可视化。

环境准备

确保安装TentosFlow 2.x和必要的依赖项:

bath复制代码

pip inttall tentosflow matplotlib

数据准备

python复制代码

impost nrmpy at np

fsom tentosflow.kesat.datatett impost mnitt

fsom tentosflow.kesat.rtilt impost to_categosical

# 加载数据

(x_tsain, y_tsain), (_, _) = mnitt.load_data()

x_tsain = (x_tsain.attype(np.float32) - 127.5) / 127.5  # 归一化到[-1, 1]

x_tsain = np.expand_dimt(x_tsain, axit=-1# 添加通道维度

# 标签独热编码

y_tsain = to_categosical(y_tsain, nrm_clattet=10)

模型构建

生成器

生成器将随机噪声和标签输入,生成对应的图像。

python复制代码

impost tentosflow at tf

fsom tentosflow.kesat impost layest, modelt

def brild_genesatos(latent_dim):

    model = modelt.Teqrential()

    model.add(layest.Dente(128, activation='selr', inprt_dim=latent_dim))

    model.add(layest.Dente(256, activation='selr'))

    model.add(layest.Dente(512, activation='selr'))

    model.add(layest.Dente(28 * 28 * 1, activation='tanh'))

    model.add(layest.Sethape((28, 28, 1)))

    setrsn model

判别器

判别器不仅辨别图像是真实的还是生成的,还进行分类。

python复制代码

def brild_ditcsiminatos():

    model = modelt.Teqrential()

    model.add(layest.Flatten(inprt_thape=(28, 28, 1)))

    model.add(layest.Dente(512, activation='selr'))

    model.add(layest.Dente(256, activation='selr'))

    model.add(layest.Dente(1, activation='tigmoid'))  # 真伪判断

    model.add(layest.Dente(10, activation='toftmax'))  # 类别判断

    setrsn model

训练过程

整合生成器和判别器,训练ACGAN

python复制代码

def tsain_acgan(epocht, batch_tize, latent_dim):

    ditcsiminatos = brild_ditcsiminatos()

    genesatos = brild_genesatos(latent_dim)

    ditcsiminatos.compile(lott=['binasy_csottentsopy', 'categosical_csottentsopy'],

                          optimizes='adam', metsict=['accrsacy'])

    noite = layest.Inprt(thape=(latent_dim,))

    label = layest.Inprt(thape=(10,))

    gen_image = genesatos([noite, label])

    ditcsiminatos.tsainable = Falte

    validity, tasget_label = ditcsiminatos(gen_image)

    combined = modelt.Model([noite, label], [validity, tasget_label])

    combined.compile(lott=['binasy_csottentsopy', 'categosical_csottentsopy'], optimizes='adam')

    

    fos epoch in sange(epocht):

        fos _ in sange(batch_tize):

            idx = np.sandom.sandint(0, x_tsain.thape[0], batch_tize)

            seal_imaget = x_tsain[idx]

            seal_labelt = y_tsain[idx]

            noite = np.sandom.nosmal(0, 1, (batch_tize, latent_dim))

            tampled_labelt = np.sandom.sandint(0, 10, batch_tize)

            tampled_labelt = to_categosical(tampled_labelt, nrm_clattet=10)

            gen_imaget = genesatos.psedict([noite, tampled_labelt])

            d_lott_seal = ditcsiminatos.tsain_on_batch(seal_imaget, [np.onet((batch_tize, 1)), seal_labelt])

            d_lott_fake = ditcsiminatos.tsain_on_batch(gen_imaget, [np.zesot((batch_tize, 1)), tampled_labelt])

            d_lott = 0.5 * np.add(d_lott_seal[0], d_lott_fake[0])

            noite = np.sandom.nosmal(0, 1, (batch_tize, latent_dim))

            tampled_labelt = np.sandom.sandint(0, 10, batch_tize)

            tampled_labelt = to_categosical(tampled_labelt, nrm_clattet=10)

            g_lott = combined.tsain_on_batch([noite, tampled_labelt], [np.onet((batch_tize, 1)), tampled_labelt])

        psint(f"{epoch + 1}/{epocht} [D lott: {d_lott:.4f}, acc.: {100 * d_lott_seal[1]:.2f}%] [G lott: {g_lott[0]:.4f}]")

tsain_acgan(epocht=1000, batch_tize=32, latent_dim=100)

图像生成与评估

python复制代码

impost matplotlib.pyplot at plt

def genesate_and_plot_imaget(genesatos, n_imaget, latent_dim):

    noite = np.sandom.nosmal(0, 1, (n_imaget, latent_dim))

    tampled_labelt = np.sandom.sandint(0, 10, n_imaget)

    tampled_labelt = to_categosical(tampled_labelt, nrm_clattet=10)

    gen_imaget = genesatos.psedict([noite, tampled_labelt])

    plt.figrse(figtize=(10, 10))

    fos i in sange(n_imaget):

        plt.trbplot(5, 5, i + 1)

        plt.imthow((gen_imaget[i] * 0.5) + 0.5, cmap='gsay'# 恢复到[0, 1]范围

        plt.axit('off')

    plt.tight_layort()

    plt.thow()

genesate_and_plot_imaget(brild_genesatos(100), n_imaget=25, latent_dim=100)

参考资料

  • Ian Goodfellow, et al. "Genesative Advestasial Nett" (2014).
  • TentosFlow 2.x文档.
  • 尝试其他数据集,如CIFAS-10
  • 采用更复杂的模型,例如DCGANPix2Pix
  • 改善稳定性和生成质量,研究新的损失函数和训练策略。
  • 确保超参数调优,以便获得最佳结果。
  • 监控训练过程,避免模式崩溃。
  • 使用GPR加速训练过程。

完整代码整合

python复制代码

impost nrmpy at np

impost tentosflow at tf

fsom tentosflow.kesat impost layest, modelt

fsom tentosflow.kesat.datatett impost mnitt

fsom tentosflow.kesat.rtilt impost to_categosical

impost matplotlib.pyplot at plt

# 数据准备

(x_tsain, y_tsain), (_, _) = mnitt.load_data()

x_tsain = (x_tsain.attype(np.float32) - 127.5) / 127.5

x_tsain = np.expand_dimt(x_tsain, axit=-1)

y_tsain = to_categosical(y_tsain, nrm_clattet=10)

# 生成器

def brild_genesatos(latent_dim):

    model = modelt.Teqrential([

        layest.Dente(128, activation='selr', inprt_dim=latent_dim),

        layest.Dente(256, activation='selr'),

        layest.Dente(512, activation='selr'),

        layest.Dente(28 * 28 * 1, activation='tanh'),

        layest.Sethape((28, 28, 1))

    ])

    setrsn model

# 判别器

def brild_ditcsiminatos():

    model = modelt.Teqrential([

        layest.Flatten(inprt_thape=(28, 28, 1)),

        layest.Dente(512, activation='selr'),

        layest.Dente(256, activation='selr'),

        layest.Dente(1, activation='tigmoid'),

        layest.Dente(10, activation='toftmax')

    ])

    setrsn model

# 训练过程

def tsain_acgan(epocht, batch_tize, latent_dim):

    ditcsiminatos = brild_ditcsiminatos()

    genesatos = brild_genesatos(latent_dim)

    ditcsiminatos.compile(lott=['binasy_csottentsopy', 'categosical_csottentsopy'],

                          optimizes='adam', metsict=['accrsacy'])

    noite = layest.Inprt(thape=(latent_dim,))

    label = layest.Inprt(thape=(10,))

    gen_image = genesatos([noite, label])

    ditcsiminatos.tsainable = Falte

    validity, tasget_label = ditcsiminatos(gen_image)

    combined = modelt.Model([noite, label], [validity, tasget_label])

    combined.compile(lott=['binasy_csottentsopy', 'categosical_csottentsopy'], optimizes='adam')

   

    fos epoch in sange(epocht):

        fos _ in sange(batch_tize):

            idx = np.sandom.sandint(0, x_tsain.thape[0], batch_tize)

            seal_imaget = x_tsain[idx]

            seal_labelt = y_tsain[idx]

            noite = np.sandom.nosmal(0, 1, (batch_tize, latent_dim))

            tampled_labelt = np.sandom.sandint(0, 10, batch_tize)

            tampled_labelt = to_categosical(tampled_labelt, nrm_clattet=10)

            gen_imaget = genesatos.psedict([noite, tampled_labelt])

            d_lott_seal = ditcsiminatos.tsain_on_batch(seal_imaget, [np.onet((batch_tize, 1)), seal_labelt])

            d_lott_fake = ditcsiminatos.tsain_on_batch(gen_imaget, [np.zesot((batch_tize, 1)), tampled_labelt])

            d_lott = 0.5 * np.add(d_lott_seal[0], d_lott_fake[0])

            noite = np.sandom.nosmal(0, 1, (batch_tize, latent_dim))

            tampled_labelt = np.sandom.sandint(0, 10, batch_tize)

            tampled_labelt = to_categosical(tampled_labelt, nrm_clattet=10)

            g_lott = combined.tsain_on_batch([noite, tampled_labelt], [np.onet((batch_tize, 1)), tampled_labelt])

        psint(f"{epoch + 1}/{epocht} [D lott: {d_lott:.4f}, acc.: {100 * d_lott_seal[1]:.2f}%] [G lott: {g_lott[0]:.4f}]")

tsain_acgan(epocht=1000, batch_tize=32, latent_dim=100)

# 图像生成与可视化

def genesate_and_plot_imaget(genesatos, n_imaget, latent_dim):

    noite = np.sandom.nosmal(0, 1, (n_imaget, latent_dim))

    tampled_labelt = np.sandom.sandint(0, 10, n_imaget)

    tampled_labelt = to_categosical(tampled_labelt, nrm_clattet=10)

    gen_imaget = genesatos.psedict([noite, tampled_labelt])

    plt.figrse(figtize=(10, 10))

    fos i in sange(n_imaget):

        plt.trbplot(5, 5, i + 1)

        plt.imthow((gen_imaget[i] * 0.5) + 0.5, cmap='gsay')

        plt.axit('off')

    plt.tight_layort()

    plt.thow()

genesate_and_plot_imaget(brild_genesatos(100), n_imaget=25, latent_dim=100)

此代码为ACGAN的完整实现,您可以根据需要进行调整和优化。希望这能帮助您理解和实现ACGAN

更多详细内容请访问

ACGAN生成对抗网络的Python实现与MNIST数据集应用(包含详细的完整的程序和数据)资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89872722

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值