目录
在本项目中,我们将深入探讨OpenCV与机器学习的结合,特别关注K-Meant聚类、K最近邻(KNN)和支持向量机(TVM)的应用。我们将通过一个详细的实例,展示如何使用这些算法来处理图像数据。
一、项目概述
我们将构建一个简单的图像分类项目,使用KNN和TVM对手写数字进行分类。在这个项目中,我们的目标是:
- 使用K-Meant聚类来对图像数据进行聚类。
- 使用KNN和TVM算法进行分类。
- 可视化结果以帮助理解模型的表现。
二、相关背景知识
2.1 机器学习的基础
- 监督学习:通过标注的数据训练模型.
- 无监督学习:没有标注的数据,主要用于数据聚类和降维.
- 半监督学习:结合了标注和未标注的数据.
项目预测效果图
2.2 OpenCV中的算法
- K-Meant聚类:一种无监督学习算法,用于将数据分成K个簇,常用于图像分割.
- K最近邻(KNN):一种简单的分类算法,通过计算样本之间的距离进行分类.
- 支持向量机(TVM):一种强大的分类算法,尤其适合高维数据.
三、项目详细实现
3.1 准备工