公众号内容拓展学习笔记(2022.3.6)

这篇博客总结了CVPR2022中的几项重要成果:FAIR的ConvNeXt展示了卷积架构在性能上的突破;YOLOS通过目标检测重新审视Transformer;超图GNN的You're All Set提出新框架;ETH-Meta-RU联合的VRT提升视频恢复技术;以及SeFa在GAN语义向量中的应用。同时,还有开源图像检测数据集推荐。
摘要由CSDN通过智能技术生成

公众号内容拓展学习笔记(2022.3.6)


📎 今日要点

  1. CVPR 2022 | 超越Transformer!FAIR重新设计纯卷积架构:ConvNeXt ⭐️⭐️

    • Abstract: 超越Transformer!FAIR重新设计纯卷积架构:ConvNeXt
    • Paper: A ConvNet for the 2020s
    • Code: https://github.com/facebookresearch/ConvNeXt
    • Tips: 完全标准ConvNet模块构建的ConvNeXt取得了优于Transformer的精度87.8%,在COCO检测与ADE20K分割任务上超越了SwinTransformer,同时保持了ConvNet的简单性与高效性。
  2. YOLOS:通过目标检测重新思考Transformer(附源代码) ⭐️⭐️

  3. You’re AllSet! 以多重集函数角度重新检视超图GNN ⭐️⭐️

  4. ETH联合Meta和鲁汶大学 提出视频恢复算法VRT,在视频超分辨率、去模糊和去噪性能达到SOTA ⭐️⭐️

    • Abstract: ETH联合Meta和鲁汶大学 提出视频恢复算法VRT,在视频超分辨率、去模糊和去噪性能达到SOTA
    • Paper: VRT: A Video Restoration Transformer
    • Code: https://github.com/JingyunLiang/VRT
    • Tips: 该论文为将Swin Transformer应用于单图超分中的SwinIR的视频扩展版本,在视频复原的各领域中都有很大的提升,本文将从视频超分方向来解读VRT。
  5. 论文解释:SeFa ,在潜在空间中为 GAN 寻找语义向量 ⭐️⭐️

    • Abstract: SeFa ,在潜在空间中为 GAN 寻找语义向量
    • Paper: Closed-Form Factorization of Latent Semantics in GANs
    • Tips: 论文提出了一种名为 SeFa 的封闭形式和无监督方法,可以无需数据采样和模型训练并找出这些方向向量来改变输出图像中的不同属性。
  6. 开源真实场景图像检测数据集汇总 ⭐️⭐️

    • Abstract: 开源真实场景图像检测数据集汇总
    • Tips: 本文汇总了九个图像检测相关的真实场景数据集,附有下载链接

📎 Others

  • 由于图片权限问题,GitHub是完整版,可以点点 star
  • 星标的数量是与个人相关程度,不代表文章内容的好坏
  • 关注我的个人网站
  • 关注我的CSDN博客
  • 关注我的哔哩哔哩
  • 关注我的公众号CV伴读社
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值