公众号内容拓展学习笔记(2022.3.12)
📎 今日要点
-
DINO:目标检测benchmark COCO屠榜的正确姿势 ⭐️⭐️
- Abstract: DINO:目标检测benchmark COCO屠榜的正确姿势
- Paper: DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
- Code: https://github.com/IDEACVR/DINO
- Tips: DINO改善了one-to-one匹配问题,训练的时候正样本和负样本同时加了噪声,提出mixed query selection method,有助于改善queries的初始化,引入非临近层的特征,更像是增加感受一下,提高小目标的表达能力。
-
难度炸裂!DeepChange:一个新的超大规模的换衣行人再识别数据集 ⭐️⭐️
- Abstract: DeepChange:一个新的超大规模的换衣行人再识别数据集
- Paper: DeepChange: A Large Long-Term Person Re-Identification Benchmark with Clothes Change
- Code: https://github.com/PengBoXiangShang/deepchange
- Tips: 17个监控摄像头(多种分辨率),1121个person ID,17万余个bbox,时间覆盖12个月,这几项主要指标,均是目前该领域数据集中的最大值。
-
人脸随意编辑!Adobe祭出新一代GAN神器:最多支持35个人脸属性变化 ⭐️⭐️
- Abstract: Adobe祭出新一代GAN神器:最多支持35个人脸属性变化
- Paper: Latent to Latent: A Learned Mapper for Identity Preserving Editing of Multiple Face Attributes in StyleGAN-generated Images
- Tips: 用GAN模型进行图像合成有一个显著缺点,就是生成的图像不可控制,经常是摘个眼睛把性别都变了。最近Adobe提出新一代GAN模型,能够自由控制35个人脸属性的变化,而不会互相干扰。
-
CVPR 2022 | 高分论文!港科大/IDEA/清华提出DN-DETR: 加速DETR收敛的去噪训练 ⭐️⭐️
- Abstract: 港科大/IDEA/清华提出DN-DETR: 加速DETR收敛的去噪训练
- Paper: DN-DETR: Accelerate DETR Training by Introducing Query DeNoising
- Address: https://github.com/FengLi-ust/DN-DETR
- Tips: 第一次提出了全新的去噪训练(DeNoising training)解决DETR decoder二分图匹配 (bipartite graph matching)不稳定的问题,可以让模型收敛速度翻倍,并对检测结果带来显著提升
-
ECCV 2020 Oral | 可逆图像缩放:完美恢复降采样后的高清图片 ⭐️⭐️
- Abstract: 可逆图像缩放:完美恢复降采样后的高清图片
- Paper: Invertible Image Rescaling
- Code: https://github.com/pkuxmq/Invertible-Image-Rescaling
- Tips: 本文使用可逆神经网络对解决这一对逆任务进行了初步的尝试,沿着这条思路仍有很多值得发掘的点。同时,信息丢失(Information Loss)所导致的ill-posed问题在现实中也大量存在,本文提供的对Lost Information进行建模的视角,相信可以对类似任务有一定的参考价值。
-
- Abstract: 用万字文章总结25种正则化方法
- Paper: Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks
- Tips: 训练中的一个关键因素是网络的正则化,它可以防止模型在训练的过程中出现过拟合的现象。本文分析了过去几年发展起来的几种正则化方法,显示了不同CNN模型的显著改进。
📎 Others
