复杂网络分析(day1)

什么是复杂网络分析

复杂网络分析是一种研究网络结构和动态行为的方法。复杂网络包括了许多连接和相互作用的节点,这些节点可以是人、物体、信号或其他系统的组成部分。在复杂网络分析中,我们可以通过分析网络的拓扑结构、节点的属性和相互关系等方面来理解网络的性质和行为。

以下是一些复杂网络分析的示例:

社交网络分析:对社交网络中的关系进行分析,探查社交网络中的群体结构、节点的中心度、社交影响力等。

网络流动性分析:分析物流、交通或信息网络中节点和边的流动性,研究网络的拥塞、传播效率等问题。

蛋白质相互作用网络分析:研究蛋白质相互作用网络中蛋白质之间的相互作用关系,探索蛋白质网络的功能和结构。

互联网分析:研究互联网中网站之间的链接关系,分析网站的排名、连接模式和影响力等。

大脑神经网络分析:通过脑电图、功能磁共振成像等技术,分析大脑神经元之间的连接关系,研究大脑的信息传递和功能组织。

这些示例只是复杂网络分析中的一部分应用领域,复杂网络分析还可以应用于其他许多领域,如金融网络、电力网络、疾病传播网络等。

一段python代码示例:

import networkx as nx
import matplotlib.pyplot as plt

# 创建一个无向图
G = nx.Graph()

# 添加节点和边
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('C', 'D')
G.add_edge('D', 'E')
G.add_edge('E', 'F')
G.add_edge('F', 'A')

# 绘制图形
nx.draw(G, with_labels=True)
plt.show()

# 计算度分布
degree_sequence = sorted([d for n, d in G.degree()], reverse=True)
print("Degree sequence:", degree_sequence)

# 计算平均路径长度
avg_path_length = nx.average_shortest_path_length(G)
print("Average path length:", avg_path_length)

# 计算聚类系数
clustering_coefficient = nx.average_clustering(G)
print("Clustering coefficient:", clustering_coefficient)
# 计算中心性
eigenvector_centrality = nx.eigenvector_centrality(G)
print("Eigenvector centrality:", eigenvector_centrality)

绘制的网络图如下:
在这里插入图片描述
一些计算结果:


Degree sequence: [2, 2, 2, 2, 2, 2]
Average path length: 1.8
Clustering coefficient: 0.0
Eigenvector centrality: {'A': 0.408248290463863, 'B': 0.408248290463863, 'C': 0.408248290463863, 'D': 0.408248290463863, 'E': 0.408248290463863, 'F': 0.408248290463863}
  经验分享 青年学者在从事复杂网络研究中的困难和成功经验是什么? 复杂网络对我们的经济和生活带来了什么变化,怎么把它的精髓通过科学普及的办法传递给大众? 从事网络科学的青年学者应该如何找到属于自己的行当?  青年学者通过什么样的途径达到在复杂网络领域发表高影响力论文的水平? 工具和信息分享 从哪里能够找到复杂网络研究所需要的资料、工具和数据?  陈关荣老师 http://www.ee.cityu.edu.hk/~gchen/ComplexNetworks.htm 有没有可能大家联合建立一个数据共享平台?  阿里数据平台 http://102.alibaba.com/competition/odps_index.htm  网络数据http://konect.uni-koblenz.de/networks/  Watts: http://smallworld.sociology.columbia.edu/cdg/datasets  Barabasi: www.nd.edu/~networks/resources.htm  Newman: http://www-personal.umich.edu/~mejn/netdata/  Arenas: http://deim.urv.cat/~aarenas/data/welcome.htm  Pajek: http://vlado.fmf.uni-lj.si/pub/networks/data/default.htm  链路预测数据: www.linkprediction.org 网络科学目前的发展态势简介【包括国际几个大的研究小组的标志性人物介绍,研究方向介绍】?  A.-L. Barabasi http://www.barabasi.com/  Adilson E. Motter http://dyn.phys.northwestern.edu/index.html  Hernan A Makse http://lisgi1.engr.ccny.cuny.edu/~makse/  Alessandro Vespignani http://www.mobs-lab.org/alessandro-vespignani.html  Mark Newman http://www-personal.umich.edu/~mejn/ 可以申请的与网络科学相关的项目介绍。  阿里巴巴复杂科学研究中心,开放基金,每年一次  国家自然科学基金【数理、信息、管理口】  省部级相关新兴交叉学科项目 是否可以组织网络科学暑期班【研讨班】?  北师大暑期班  2012年“复杂系统与管理”国防科学技术大学研究生暑期学校  …… 国内外较好的期刊,可以投稿的期刊、会议介绍。  国际期刊:  Nature, Science  PNAS, Nature Physics, Nature Communication,PRL  Scientific Reports,PLoS ONE,New Journal of Physics, Physical Review X, Management Science, IEEE Trans, Physical Review E, EPL  JPA, EPJB, JST, Physica A, IJMPC,IJMPB, Phys. Lett. A, Adv. Complex Syst.  国内期刊:  CPB, CPL, 中国科学,科学通报,物理学报,复杂系统与复杂性科学,电子科技大学学报-复杂性科学专栏 相关会议:  网络科学论坛(2014年第十届)  全国复杂网络大会(2014年第十届,国防科技大学)  复杂性科学研究会第二次会议 (2014年7月12-16日,温州大学)  …… 海外观察 海外生活经历分享 国内外工作模式对比 我们可以借鉴和学习的地方   具体研究问题探讨 网络大数据挖掘中的正问题、反问题及其复杂性问题怎么处理? 如何表述和仿真陆海空天一体化的信息网络和通信网络? 如何借助复杂网络理论发掘、分析和解决行业、企业、城市的问题;如何借助复杂网络理论,充分利用移动运营商拥有的各类数据,发掘能服务于第三方的高价值的应用场景。 今天的复杂网络研究能为未来网络(特别是未来互联网)提供什么有用的理论、方法和工具? 其他问题,自由讨论 谢谢参与!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值