概率论习题之标准正态绝对值的期望

概率论习题之标准正态绝对值的期望

一、主要注意的点

E ∣ X ∣ = 2 Π 计算 : E ∣ X ∣ = ∫ − ∞ + ∞ ∣ X ∣ f ( x ) d x E Z = E ∣ x − μ ∣ E|X|={\sqrt{\frac{2}{\Pi}} }\\ 计算:E|X|=\displaystyle \int^{+\infty}_{-\infty}{|X|f(x)dx}\\ EZ=E|x-\mu| EX=Π2 计算:EX=+Xf(x)dxEZ=Exμ

二、习题

X ∼ N ( 0 , 1 ) , E ( ∣ X ∣ ) = 2 Π X\sim N(0,1),E(|X|)=\sqrt{\frac{2}{\Pi}} XN(0,1),E(X)=Π2

X ∼ N ( 3 , 9 ) , E ( ∣ X − 3 ∣ ) = X\sim N(3,9),E(|X-3|)= XN(3,9),E(X3∣)=
处理一般正态的基本操作:1.标准化 2.标准正态
E ∣ X − 3 3 ∣ = 2 π 等式左右两边同时乘以 3 E ∣ X − 3 ∣ = 3 2 π   E|\frac{X-3}{3}|=\sqrt{\frac{2}{\pi}}\\ 等式左右两边同时乘以3\\ E|X-3|=\frac{3\sqrt 2}{\sqrt{\pi}}\ E3X3=π2 等式左右两边同时乘以3EX3∣=π 32  

X ∼ N ( μ , σ 2 ) , Z = ∣ X − μ ∣ , E ( Z ) = X\sim N(\mu,\sigma^2),Z=|X-\mu|,E(Z)= XN(μ,σ2),Z=Xμ,E(Z)=
标准化 : E ∣ X − μ σ ∣ = 2 π 默认 σ 大于 0 ,即在等式两边同时乘以 σ E ∣ X − μ ∣ = 2 μ π 标准化:E|\frac{X-\mu}{\sigma}|=\frac{2}{\pi}\\ 默认\sigma大于0,即在等式两边同时乘以\sigma\\ E|X-\mu|=\frac{\sqrt{2}\mu}{\sqrt{\pi}}\\ 标准化:EσXμ=π2默认σ大于0,即在等式两边同时乘以σEXμ=π 2 μ

设( x , y ) ∼ N ( 0 , 0 ; 1 2 , 1 2 ; 0 ) , ϕ ( x ) 为标准正态函数,则 P { X − Y < E ∣ X − Y ∣ } = S E T   ( x , y ) ∼ N ( 0 , 0 ; 1 2 , 1 2 ; 0 ) , ϕ ( x )   i s   a   s t a n d a r d   n o r m a l   f u n c t i o n ,   t h e n   P { X − Y < E ∣ X − Y ∣ } = 设(x,y)\sim N(0,0;\frac{1}{2},\frac{1}{2};0),\phi(x)为标准正态函数,则P \lbrace X-Y<E|X-Y|\rbrace=\\ SET ~(x,y)\sim N(0,0; \frac{1}{2},\frac{1}{2}; 0), \phi(x) ~is ~a ~standard~ normal ~function, ~then ~P \lbrace X-Y<E|X-Y|\rbrace= 设(x,y)N(0,0;21,21;0),ϕ(x)为标准正态函数,则P{XY<EXY}=SET (x,y)N(0,0;21,21;0),ϕ(x) is a standard normal function, then P{XY<EXY}=
X ∼ N ( 0 , 1 2 ) Y ∼ N ( 0 , 1 2 ) ( 正态分布的线性组合服从一维正态 ) L i n e a r   c o m b i n a t i o n s   o f   n o r m a l   d i s t r i b u t i o n s   o b e y   o n e − d i m e n s i o n a l   n o r m a l X − Y ∼ N ( 0 , 1 )    ( 期望相减,方差相加 ) E x p e c t a t i o n s   a r e   s u b t r a c t e d , a n d   v a r i a n c e s   a r e   a d d e d E ( X − Y ) = 2 π p l e a s e   l e t    Z = x − y S o    P Z < E ∣ X − Y ∣ = Φ ( 2 π ) X\sim N(0,\frac{1}{2})\\ Y\sim N(0,\frac{1}{2})\\ (正态分布的线性组合服从一维正态)\\ Linear~combinations~\\ of ~normal~ distributions ~obey~ one-dimensional~normal\\ X-Y\sim N(0,1) ~~(期望相减,方差相加)\\ Expectations ~are ~subtracted, and ~variances~ are~added\\ E(X-Y)=\frac{\sqrt{2}}{\sqrt{\pi}}\\ please~let~~Z=x-y\\ So~~P{Z<E|X-Y|}=\Phi(\sqrt{\frac{2}{\pi}})\\ XN(0,21)YN(0,21)(正态分布的线性组合服从一维正态)Linear combinations of normal distributions obey onedimensional normalXYN(0,1)  (期望相减,方差相加)Expectations are subtracted,and variances are addedE(XY)=π 2 please let  Z=xySo  PZ<EXY=Φ(π2 )

设 X 1 , X 2 为来自总体 N ( μ , σ 2 ) 的简单随机样本,记 σ ^ = a ∣ X 1 − X 2 ∣ , 若 E ( σ ) = σ , 则 a = L e t   X 1   a n d   X 2   b e   s i m p l e   r a n d o m   s a m p l e s   f r o m   t h e   p o p u l a t i o n   N ( μ , σ 2 )   a n d   d e n o t e   σ ^ = a ∣ X 1 − X 2 ∣ , i f   E ( σ ) = σ , t h e n   a = 设X1,X2为来自总体N(\mu,\sigma^2)的简单随机样本,记\hat{\sigma}=a|X1-X2|,若E(\sigma)=\sigma,则a=\\ Let ~X1 ~and~ X2 ~be ~simple ~random ~samples~ from ~the~ population ~N(\mu,\sigma^2) ~and ~denote ~\hat{\sigma}=a|X1-X2|, \\ if ~E(\sigma)=\sigma, then ~a= X1X2为来自总体N(μ,σ2)的简单随机样本,记σ^=aX1X2∣,E(σ)=σ,a=Let X1 and X2 be simple random samples from the population N(μ,σ2) and denote σ^=aX1X2∣,if E(σ)=σ,then a=
X 1 ∼ N ( μ , σ 2 ) X 2 ∼ N ( μ , σ 2 ) E ( σ ^ ) = E ( a ∣ X 1 − X 2 ∣ ) = a E ∣ X 1 − X 2 ∣ X 1 − X 2 ∼ N ( 0 , 2 σ 2 ) X 1 − X 2 2 μ ∼ N ( 0 , 1 ) E ∣ X 1 − X 2 2 μ = 2 π B o t h   s i d e s   o f   t h e   e q u a t i o n   a r e   m u l t i p l i e d   b y   2 μ   a t   t h e   s a m e   t i m e E ∣ X 1 − X 2 ∣ = 2 σ π S o    E ( σ ^ ) = a ⋅ 2 σ π = σ 2 π ⋅ a = 1 a = π 2 X1\sim N(\mu,\sigma^2)\\ X2\sim N(\mu,\sigma^2)\\ E(\hat{\sigma})=E(a|X1-X2|)=aE|X1-X2|\\ X1-X2\sim N(0,2\sigma^2)\\ \frac{X1-X2}{\sqrt{2}\mu} \sim N(0,1)\\ E|\frac{X1-X2}{\sqrt{2}\mu}=\sqrt{\frac{2}{\pi}}\\ Both~sides~of~the~equation~are~multiplied~by~ \sqrt{2}\mu~at~the~same~time\\ E|X1-X2|=\frac{2\sigma}{\sqrt{\pi}}\\ So~~E(\hat{\sigma})=a \cdot \frac{2\sigma}{\sqrt{\pi}}=\sigma\\ \frac{2}{\sqrt{\pi}} \cdot a=1\\ a = \frac{\sqrt{\pi}}{2}\\ X1N(μ,σ2)X2N(μ,σ2)E(σ^)=E(aX1X2∣)=aEX1X2∣X1X2N(0,2σ2)2 μX1X2N(0,1)E2 μX1X2=π2 Both sides of the equation are multiplied by 2 μ at the same timeEX1X2∣=π 2σSo  E(σ^)=aπ 2σ=σπ 2a=1a=2π

设二维随机变量 ( X 1 , X 2 ) ∼ N ( 0 , 0 ; 1 , 1 ; 0 ) , 记 X = max ⁡ { X 1 , X 2 } , Y = min ⁡ { X 1 , X 2 } , Z = X − Y , 求 E ( Z ) L e t   t h e   t w o − d i m e n s i o n a l   r a n d o m   v a r i a b l e ( X 1 , X 2 ) ∼ N ( 0 , 0 ; 1 , 1 ; 0 ) ,   w r i t e   X = m a x { X 1 , X 2 } , Y = m i n { X 1 , X 2 } , Z = X − Y , a n d   f i n d E ( Z ) 设二维随机变量(X1,X2)\sim N(0,0;1,1;0),记X=\max\lbrace X1,X2 \rbrace,Y=\min\lbrace X1,X2 \rbrace,Z=X-Y,求E(Z)\\ Let ~the~ two-dimensional ~random ~variable(X1,X2)\sim N(0,0; 1,1; 0),\\ ~ write ~X=max\lbrace X1,X2 \rbrace,Y=min\lbrace X1,X2 \rbrace,Z=X-Y, and ~find E(Z) 设二维随机变量(X1,X2)N(0,0;1,1;0),X=max{X1,X2},Y=min{X1,X2},Z=XY,E(Z)Let the twodimensional random variable(X1,X2)N(0,0;1,1;0), write X=max{X1,X2},Y=min{X1,X2},Z=XY,and findE(Z)
X 1 ∼ N ( 0 , 1 ) X 2 ∼ N ( 0 , 1 ) E ( Z ) = E ( X − Y ) i f    X 1 > X 2 , Z = X − Y = X 1 − X 2 e l s e    Z = X − Y = X 2 − X 1 S o    Z = ∣ X 1 − X 2 ∣ E ( Z ) = E ( ∣ X − Y ∣ ) s t a n d a r d i z a t i o n   : X 1 − X 2 2 ∼ N ( 0 , 1 ) E ∣ X 1 − X 2 2 ∣ = 2 π B o t h   s i d e s   o f   t h e   e q u a t i o n   a r e   m u l t i p l i e d   b y   2   a t   t h e   s a m e   t i m e E ( X 1 − X 2 ) = 2 π X1\sim N(0,1)\\ X2\sim N(0,1)\\ E(Z)=E(X-Y)\\ if~~X1>X2,Z=X-Y=X1-X2\\ else~~Z=X-Y=X2-X1\\ So~~Z=|X1-X2|\\ E(Z)=E(|X-Y|)\\ standardization~:\frac{X1-X2}{\sqrt{2}}\sim N(0,1)\\ E|\frac{X1-X2}{\sqrt{2}}|=\sqrt{\frac{2}{\pi}}\\ Both~sides~of~the~equation~are~multiplied~by~ \sqrt{2}~at~the~same~time\\ E(X1-X2)=\frac{2}{\sqrt{\pi}}\\ X1N(0,1)X2N(0,1)E(Z)=E(XY)if  X1>X2,Z=XY=X1X2else  Z=XY=X2X1So  Z=X1X2∣E(Z)=E(XY)standardization :2 X1X2N(0,1)E2 X1X2=π2 Both sides of the equation are multiplied by 2  at the same timeE(X1X2)=π 2

设 X 1 与 X 2 相互独立,且服从正态分布 N ( μ , σ 2 ) , 求 E { ( X 1 , X 2 } ) L e t   X 1   a n d   X 2   b e   i n d e p e n d e n t   o f   e a c h   o t h e r   a n d   o b e y   t h e   n o r m a l   d i s t r i b u t i o n N ( μ , σ 2 ) , a n d   f i n d   E { ( X 1 , X 2 } ) 设X1与X2相互独立,且服从正态分布N(\mu,\sigma^2),求E\lbrace (X1,X2\rbrace)\\ Let ~X1 ~and~ X2 ~be ~independent ~of ~each ~other ~and ~obey~ the ~normal ~distribution N(\mu,\sigma^2), and ~find ~E\lbrace(X1,X2\rbrace) X1X2相互独立,且服从正态分布N(μ,σ2),E{(X1,X2})Let X1 and X2 be independent of each other and obey the normal distributionN(μ,σ2),and find E{(X1,X2})
X 1 ∼ N ( μ , σ 2 ) X 2 ∼ N ( μ , σ 2 ) E { max ⁡ ( x 1 , x 2 ) = 1 2 ( x 1 + x 2 + ∣ x 1 − x 2 ∣ ) ) } = 1 2 ( E ( X 1 ) + E ( X 2 ) + E ∣ X 1 − X 2 ∣ ) X 1 − X 2 ∼ N ( 0 , 2 σ 2 ) X 1 − X 2 2 σ ∼ N ( 0 , 1 ) E ∣ X 1 − X 2 2 σ ∣ = 2 π E ( X 1 − X 2 ) = 2 σ π E { max ⁡ ( x 1 , x 2 ) = 1 2 ( x 1 + x 2 + ∣ x 1 − x 2 ∣ ) ) } = 1 2 ( E ( X 1 ) + E ( X 2 ) + E ∣ X 1 − X 2 ∣ ) = 1 2 ( μ + μ + 2 σ π ) = μ + σ π X1\sim N(\mu,\sigma^2)\\ X2\sim N(\mu,\sigma^2)\\ E\lbrace\max(x1,x2)=\frac{1}{2}(x1+x2+|x1-x2|))\rbrace\\ =\frac{1}{2}(E(X1)+E(X2)+E|X1-X2|)\\ X1-X2\sim N(0,2\sigma^2)\\ \frac{X1-X2}{\sqrt{2}\sigma}\sim N(0,1)\\ E|\frac{X1-X2}{\sqrt{2}\sigma}|=\sqrt{\frac{2}{\pi}}\\ E(X1-X2)=\frac{2\sigma}{\sqrt{\pi}}\\ E\lbrace\max(x1,x2)=\frac{1}{2}(x1+x2+|x1-x2|))\rbrace\\ =\frac{1}{2}(E(X1)+E(X2)+E|X1-X2|)\\ =\frac{1}{2}(\mu+\mu+\frac{2\sigma}{\sqrt{\pi}})\\ =\mu+\frac{\sigma}{\sqrt{\pi}}\\ X1N(μ,σ2)X2N(μ,σ2)E{max(x1,x2)=21(x1+x2+x1x2∣))}=21(E(X1)+E(X2)+EX1X2∣)X1X2N(0,2σ2)2 σX1X2N(0,1)E2 σX1X2=π2 E(X1X2)=π 2σE{max(x1,x2)=21(x1+x2+x1x2∣))}=21(E(X1)+E(X2)+EX1X2∣)=21(μ+μ+π 2σ)=μ+π σ

  • 49
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值