跳过开屏广告

在这里插入图片描述

前段时间各大知名启屏广告自动跳过 APP,诸如李跳跳、叮小跳、蹦跶、大圣净化、一指禅等因收到律师函而停止更新维护的事情闹得人心惶惶

不少粉丝就开始担心起来「今后怎么办啊?」的问题图片

My My Love,Joshua Radin - Wax Wings

1 自定义规则


虽然 APP 被迫下架这事令人神伤,但大家其实完全没必要为再没有同类 APP 可用这事担心

图片

首先就是这类 APP 都是依靠安卓系统的无障碍服务,在 APP 启动时模拟人工点击跳过按钮来实现自动跳过开屏广告,实际都是无需联网即可使用的图片

只不过因为每个 APP 的广告关闭按钮位置都不相同,联网权限只是作者为了给你更新不同 APP 的对应规则

图片

简单来说,**就是虽然在应用市场被下架了,但完全不影响 APP 的继续使用!**尽管作者以后都不会再更新规则了,但你完全可以自行添加规则继续使用

1.1 简单类

而这类热门的 APP 几乎都是支持自行添加规则的,比如李跳跳

在李跳跳 APP 内,点击更多 » 设置 » 找到你要添加规则的APP,比如中国电信

然后根据不同情况进行添加即可,例如中国电信这个 APP 这种比较简单的开屏广告,我们通过开屏广告的文字按钮即可进行定位,那在第 4 步中就没必要用手势点击,直接设置按钮的文字即可
在这里插入图片描述

图片图片图片图片

<<左右滑动查看更多>>

这样我们就非常轻松的配置好了一条自动跳过广告的规则,在 APP 显示跳过按钮的一瞬间,李跳跳就会自动帮你点击(如下图)

图片

像中国电信这类 APP,算是最简单的一类,有很明显的跳过按钮,也有文字内容以供李跳跳获取按钮位置

1.2 无文字类

但经常也会有一类 APP 像下面这样,仅在不明显的位置有一个 X 按钮以供关闭

图片

对于这种弹窗开屏广告,如果你想要使用李跳跳来跳过,我们需要得知这个关闭按钮代码层面的 id 或者 bounds

当然我们仅凭截图是没办法获取的,我们可以用 AutoX.js(http://doc.autoxjs.com/)或者阿虚之前介绍过的 Hamibot(https://hamibot.com/)来获取

如果你访问Github困难,建议了解《2022 Github加速访问教程》

阿虚这里用 AutoX.js 来演示一下,安装好 APP 之后点击左上角设置把悬浮窗功能打开

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值