【智能算法】动态规划算法

目录

一、动态规划算法概述

二、动态规划算法分类

2.1 线性动态规划

2.2 区间动态规划

2.3 树形动态规划

2.4 数位动态规划

2.5 状态压缩动态规划

2.6 双维度动态规划

2.7 多阶段决策过程

2.8 高维动态规划

三、动态规划算法C语言实现

3.1 线性动态规划

3.2 区间动态规划

3.3 树形动态规划

3.4 数位动态规划

3.5 状态压缩动态规划

3.6 双维度动态规划

3.7 多阶段决策过程

3.8 高维动态规划

四、动态规划算法应用


一、动态规划算法概述

        动态规划算法是一种在计算机科学和数学优化领域中广泛使用的算法策略。它特别适用于那些可以分解为多个重叠子问题的问题,并且这些问题的子问题之间存在递推关系。通过动态规划,我们可以高效地解决那些传统递归方法会遇到的效率瓶颈问题。

        在动态规划算法中,首先需要定义状态,这一步骤是至关重要的。状态通常代表了问题解决过程中的某个阶段,它包含了求解问题所需的所有必要信息。例如,在解决一个最短路径问题时,状态可能代表了从起点到当前点的最短路径长度。

        接下来,我们需要建立状态转移方程,这是动态规划的核心。状态转移方程描述了如何从前一个或多个状态推导出当前状态的解。这些方程通常基于问题的最优子结构特性,即问题的最优解包含其子问题的最优解。例如,在背包问题中,状态转移方程会告诉我们,对于每个物品,是选择放入背包还是不放入背包,以达到背包容量限制下的最大价值。

        初始化是动态规划的另一个关键步骤。在开始计算之前,我们需要确定初始状态的值,这些通常是问题的最小子问题的解。例如,在计算斐波那契数列时,初始状态是前两个数的值。

        计算顺序的确定是为了确保在计算一个状态之前,它的所有依赖状态都已经被计算。这通常通过自底向上的方式实现,从最小的子问题开始,逐步构建到最终问题的解。这种顺序可以避免递归调用中可能出现的重复计算,从而显著提高算法的效率。

        最后,构建解是将计算出的状态组合起来,形成原问题的最终解。在某些情况下,这可能涉及到回溯算法,以找到达到最优解的具体路径或决策序列。

        动态规划算法的应用非常广泛,它在解决最短路径问题、背包问题、编辑距离问题等许多领域都显示出了其强大的能力。通过动态规划,我们能够以一种系统化和高效的方式,解决那些看似复杂且难以直接求解的问题。

二、动态规划算法分类

        动态规划算法,作为解决优化问题的强大工具,其应用广泛且分类多样。它通过将复杂问题分解为更小的子问题,并存储这些子问题的解,以避免重复计算,从而高效地找到问题的最优解。下面,我们将详细探讨动态规划算法的几种主要分类,并通过具体的例子来加深理解。

2.1 线性动态规划

        这是动态规划中最基础的类型,它处理的问题通常可以用一维数组来表示。例如,斐波那契数列问题,通过动态规划我们可以避免重复计算,从而在多项式时间内得到结果。另一个经典的例子是背包问题,它要求在不超过背包容量的前提下,选择物品的最优组合以达到最大价值。

2.2 区间动态规划

        这类问题关注的是序列中连续子序列的最优解。例如,最长公共子序列问题,它在比较两个序列时,寻找它们之间最长的共同子序列。又如最长上升子序列问题,它在给定的序列中寻找最长的严格递增子序列。这些问题通常需要我们定义一个二维数组来记录子问题的解。

2.3 树形动态规划

        这类问题的结构是树形的,需要在树的节点上进行动态规划。例如,在一棵树上寻找路径的最大权值和,或者是在树形结构中进行背包问题的求解。树形动态规划往往需要递归地在子树上进行状态转移,以达到全局最优解。

2.4 数位动态规划

        这类问题与数字的位数有关,通过动态规划来解决与数字位数相关的优化问题。例如,数字的位数限制了状态的数量,使得问题可以被有效地分解和求解。一个典型的例子是求解一个数的二进制表示中1的个数的最小变化次数,以达到某种特定的条件。

2.5 状态压缩动态规划

        在处理状态空间较小的问题时,状态压缩动态规划显得尤为有用。它通过将状态压缩成一个整数,从而减少存储空间的需求。这种方法适用于那些状态可以用二进制位来表示的情况,例如在图论中的某些路径问题。

2.6 双维度动态规划

        这类问题涉及二维数组或需要同时考虑两个维度的状态转移。例如,矩阵链乘问题,它要求我们找到一种最优的矩阵乘法顺序,以最小化计算乘法的次数。又如最长公共子串问题,它在两个字符串中寻找最长的公共子串。

2.7 多阶段决策过程

        这类问题涉及多个阶段的决策过程,每个阶段的决策会影响后续阶段的状态。例如,经典的最短路径问题,它在图中寻找两点之间的最短路径。又如项目调度问题,它在多个项目中寻找最优的执行顺序。

2.8 高维动态规划

        这类问题涉及三维或更高维度的状态转移,适用于复杂问题的建模。虽然这类问题的空间复杂度较高,但它们能够解决一些特定的复杂问题,如三维空间中的路径规划问题。

        通过上述分类,我们可以看到动态规划算法的多样性和灵活性。每种类型的动态规划都有其特定的适用场景和解题策略,选择合适的动态规划方法可以有效地解决各种优化问题,从而在计算机科学和工程领域发挥重要作用。

三、动态规划算法C语言实现

3.1 线性动态规划

        这是动态规划中最基础的类型,它处理的问题通常可以用一维数组来表示。例如,斐波那契数列问题,通过动态规划我们可以避免重复计算,从而在多项式时间内得到结果。另一个经典的例子是背包问题,它要求在不超过背包容量的前提下,选择物品的最优组合以达到最大价值。

3.2 区间动态规划

#include <stdio.h>
 
int max_subarray_sum(int *nums, int size) {
    int max_ending_here = 0;
    int max_so_far = 0;
    for (int i = 0; i < size; i++) {
        max_ending_here = max_ending_here + nums[i];
        if (max_ending_here > max_so_far) {
            max_so_far = max_ending_here;
        }
        if (max_ending_here < 0) {
            max_ending_here = 0;
        }
    }
    return max_so_far;
}
 
int main() {
    int nums[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
    int size = sizeof(nums) / sizeof(nums[0]);
    printf("The maximum subarray sum is: %d\n", max_subarray_sum(nums, size));
    return 0;
}

        这段代码中的max_subarray_sum函数就是一个区间动态规划的例子,它用于找到数组中最大的子段和。在这个问题中,我们定义了一个状态max_ending_here来记录以当前元素结尾的子段的最大和,并且定义了一个状态max_so_far来记录到当前为止找到的最大子段和。通过遍历数组,我们不断更新这两个状态,最终返回max_so_far即可得到最大子段和。

3.3 树形动态规划

#include <stdio.h>
#include <stdlib.h>
 
// 树的节点结构
typedef struct Node {
    int value;
    struct Node* left;
    struct Node* right;
} Node;
 
// 创建节点
Node* createNode(int value) {
    Node* node = (Node*)malloc(sizeof(Node));
    node->value = value;
    node->left = NULL;
    node->right = NULL;
    return node;
}
 
// 动态规划的核心函数
int maxPathSum(Node* node) {
    if (node == NULL) {
        return 0;
    }
 
    int leftMax = maxPathSum(node->left);
    int rightMax = maxPathSum(node->right);
 
    // 计算以当前节点为根的子树的最大路径和
    int maxSingle = node->value;
    if (leftMax > 0) {
        maxSingle += leftMax;
    }
    if (rightMax > 0 && rightMax > maxSingle) {
        maxSingle = rightMax;
    }
 
    // 返回以当前节点为根的子树的最大路径和,同时考虑了跨子树的路径
    return maxSingle > 0 ? maxSingle : node->value;
}
 
int main() {
    // 构建一个简单的树
    Node* root = createNode(10);
    root->left = createNode(-2);
    root->right = createNode(7);
    root->left->left = createNode(9);
    root->left->right = createNode(-6);
 
    // 计算最大路径和
    int maxSum = maxPathSum(root);
    printf("The maximum path sum is: %d\n", maxSum);
 
    return 0;
}

        这段代码首先定义了一个树的节点结构,并实现了创建节点的函数。然后实现了maxPathSum函数,它是树形动态规划的核心,该函数递归地计算从当前节点出发的最大路径和。最后,在main函数中构建了一个树,并调用maxPathSum函数计算最大路径和,并打印结果。

3.4 数位动态规划

#include <stdio.h>
#include <stdlib.com>
 
// 计算数位之和的函数
int calc_digit_sum(int n) {
    int sum = 0;
    while (n > 0) {
        sum += n % 10;
        n /= 10;
    }
    return sum;
}
 
// 数位动态规划的核心函数
int digit_dp(int n) {
    int dp[10];
    dp[0] = 1; // 初始化dp数组,0的任何次幂都为1
    int sum = 0;
 
    // 遍历到n
    for (int i = 1; i <= n; i++) {
        sum += calc_digit_sum(i); // 计算i的数位和
        dp[i % 10]++; // 更新dp数组
    }
 
    // 输出结果
    printf("和为%d的数的个数为%d\n", n, dp[n % 10]);
    return sum;
}
 
int main() {
    int n;
    printf("请输入一个整数:");
    scanf("%d", &n);
    int result = digit_dp(n);
    printf("0到%d的数位和为%d\n", n, result);
    return 0;
}

        这段代码首先定义了一个计算数位和的函数calc_digit_sum,然后定义了一个数位动态规划的核心函数digit_dp,该函数使用一个数组来记录每个数位出现的次数,并输出特定条件下的数位和。最后在main函数中实现了和用户的交互,并调用digit_dp函数来计算结果。

3.5 状态压缩动态规划

#include <stdio.h>
 
// 0-1背包问题的状态压缩动态规划解法
int knapsack(int weight[], int value[], int n, int W) {
    int i, j;
    int **dp = (int **)malloc(sizeof(int *) * (n + 1)); // 动态分配二维数组
    for (i = 0; i <= n; i++) {
        dp[i] = (int *)malloc(sizeof(int) * (W + 1));
    }
 
    // 初始化第一列
    for (i = 0; i <= n; i++) {
        dp[i][0] = 0;
    }
 
    // 初始化第一行
    for (j = 0; j <= W; j++) {
        if (j >= weight[0]) {
            dp[0][j] = value[0];
        } else {
            dp[0][j] = 0;
        }
    }
 
    // 动态规划状态转移
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= W; j++) {
            if (j < weight[i]) {
                dp[i][j] = dp[i - 1][j];
            } else {
                dp[i][j] = (dp[i - 1][j] > dp[i - 1][j - weight[i]] + value[i]) ? dp[i - 1][j] : dp[i - 1][j - weight[i]] + value[i];
            }
        }
    }
 
    // 输出最终结果
    printf("最大价值: %d\n", dp[n][W]);
 
    // 释放动态分配的内存
    for (i = 0; i <= n; i++) {
        free(dp[i]);
    }
    free(dp);
 
    return dp[n][W];
}
 
int main() {
    int weight[] = {2, 1, 3}; // 物品的重量
    int value[] = {3, 2, 4};  // 物品的价值
    int n = 3;                // 物品的数量
    int W = 4;                // 背包的总重量
 
    knapsack(weight, value, n, W);
 
    return 0;
}

        这段代码实现了0-1背包问题,并在主函数中调用了knapsack函数。它展示了如何使用二维数组进行状态压缩,并在最后释放了所有动态分配的内存。这个例子简化了原始代码,并专注于解决0-1背包问题的核心算法。

3.6 双维度动态规划

#include <stdio.h>
#include <stdlib.h>
 
// 假设的函数,计算两个数的和
int sum(int a, int b) {
    return a + b;
}
 
// 动态规划的核心函数
int calculate(int** dp, int i, int j, int** cache, int (*func)(int, int), int n) {
    // 检查缓存
    if (cache[i][j] != -1) {
        return cache[i][j];
    }
    
    // 基本情况
    if (i == n) {
        dp[i][j] = 1; // 假设的情况
    } else {
        // 递归计算所有可能的子问题
        for (int k = 0; k < n; k++) {
            dp[i][j] += calculate(dp, i + 1, func(j, k), cache, func, n);
        }
    }
    
    // 更新缓存
    cache[i][j] = dp[i][j];
    return dp[i][j];
}
 
int main() {
    int n = 2; // 示例中的二维数组大小
    int** dp = (int**)malloc(n * sizeof(int*));
    int** cache = (int**)malloc(n * sizeof(int*));
    for (int i = 0; i < n; i++) {
        dp[i] = (int*)malloc(n * sizeof(int));
        cache[i] = (int*)malloc(n * sizeof(int));
        for (int j = 0; j < n; j++) {
            dp[i][j] = 0; // 初始化dp数组
            cache[i][j] = -1; // 初始化缓存数组为未填充状态
        }
    }
    
    // 调用动态规划函数
    int result = calculate(dp, 0, 0, cache, sum, n);
    
    // 打印结果
    printf("结果是: %d\n", result);
    
    // 释放动态分配的内存
    for (int i = 0; i < n; i++) {
        free(dp[i]);
        free(cache[i]);
    }
    free(dp);
    free(cache);
    
    return 0;
}

        这个代码示例展示了如何使用动态规划方法解决一个具体的问题。在这个例子中,我们使用了一个假设的函数sum来代表实际的两个数相加的操作,并展示了如何为这个问题构建一个动态规划的解决方案。代码中包含了正确的内存管理,以确保不会发生内存泄露。

3.7 多阶段决策过程

#include <stdio.h>
#include <stdlib.com>
 
// 假设的多阶段决策问题结构
typedef struct {
    int max_iter;       // 最大迭代次数
    double tol;         // 收敛阈值
    double *u;          // 决策变量
    double (*obj_func)(double *); // 目标函数
    int (*constr_func)(double *, double *); // 约束条件函数
} MDP;
 
// 示例目标函数
double my_obj_func(double *u) {
    return u[0] * u[0]; // 例如最小化x^2
}
 
// 示例约束条件函数
int my_constr_func(double *u, double *constr) {
    constr[0] = u[0] * u[0] + u[1] * u[1]; // 约束条件,例如x^2 + y^2 <= 1
    return (constr[0] <= 1);
}
 
// 主函数示例
int main() {
    MDP mdp;
    mdp.max_iter = 1000;
    mdp.tol = 1e-6;
    mdp.u = (double *)malloc(sizeof(double) * 2);
    mdp.obj_func = my_obj_func;
    mdp.constr_func = my_constr_func;
 
    // 初始化决策变量
    mdp.u[0] = 0.0;
    mdp.u[1] = 0.0;
 
    // 多阶段决策过程的伪代码实现
    // ...
 
    free(mdp.u);
    return 0;
}

        这个代码示例提供了一个简化的框架,展示了如何定义和初始化一个多阶段决策问题的结构体,并且如何为其成员分配内存和初始值。在实际应用中,多阶段决策过程会涉及迭代求解算法的具体实现,这部分通常需要根据问题的具体要求来设计。

3.8 高维动态规划

#include <stdio.h>
#include <stdlib.h>
 
// 假设有一个简单的动态规划问题,最长递增子序列
int longest_increasing_subsequence(int** arr, int m, int n) {
    int i, j;
    int** dp = (int**)malloc(m * sizeof(int*));
    for (i = 0; i < m; i++) {
        dp[i] = (int*)malloc(n * sizeof(int));
    }
 
    for (i = 0; i < m; i++) {
        for (j = 0; j < n; j++) {
            if (i == 0 && j == 0) {
                dp[i][j] = arr[i][j];
            } else if (i == 0) {
                dp[i][j] = arr[i][j] + dp[i][j - 1];
            } else if (j == 0) {
                dp[i][j] = arr[i][j] + dp[i - 1][j];
            } else {
                dp[i][j] = arr[i][j] + (arr[i][j] > arr[i - 1][j - 1] ? dp[i - 1][j] : dp[i][j - 1]);
            }
        }
    }
 
    int max = 0;
    for (i = 0; i < m; i++) {
        for (j = 0; j < n; j++) {
            if (dp[i][j] > max) {
                max = dp[i][j];
            }
        }
    }
 
    // 释放内存
    for (i = 0; i < m; i++) {
        free(dp[i]);
    }
    free(dp);
 
    return max;
}
 
int main() {
    int m = 2;
    int n = 3;
    int** arr = (int**)malloc(m * sizeof(int*));
    for (int i = 0; i < m; i++) {
        arr[i] = (int*)malloc(n * sizeof(int));
    }
    arr[0][0] = 1; arr[0][1] = 2; arr[0][2] = 3;
    arr[1][0] = 7; arr[1][1] = 8; arr[1][2] = 5;
 
    int result = longest_increasing_subsequence(arr, m, n);
    printf("The length of the longest increasing subsequence is: %d\n", result);
 
    // 释放内存
    for (int i = 0; i < m; i++) {
        free(arr[i]);
    }
    free(arr);
 
    return 0;
}

        这个例子中,我们使用了一个二维数组dp来存储状态,并且在longest_increasing_subsequence函数中实现了动态规划的逻辑。这个函数可以计算出二维输入数组中最长递增子序列的长度。在main函数中,我们创建了一个示例数组并调用了longest_increasing_subsequence函数来获取结果。请注意,这个例子中的动态规划逻辑是为了演示目的简化的,并不代表真实世界中的高维动态规划问题。

四、动态规划算法应用

        动态规划算法是一种强大的数学工具,它通过将复杂问题拆解为更小的子问题来寻找解决方案。这种方法特别适用于那些具有重叠子问题和最优子结构的优化问题。动态规划算法的核心在于,它能够识别并利用问题的重复性,通过存储中间结果来避免重复计算,从而显著提高求解效率。

        在实际应用中,动态规划算法被广泛用于解决各种最优化问题。例如,在背包问题中,我们面临的是如何在不超过背包承重限制的情况下,选择物品以最大化总价值。这个问题不仅在理论上有重要意义,而且在现实世界中也有广泛的应用,比如在物流和供应链管理中优化货物装载。

        另一个经典的例子是寻找两个序列的最长公共子序列(LCS)。这个问题在生物信息学中尤其重要,比如在DNA序列比对中寻找相似性。LCS问题要求我们找出两个序列共有的最长子序列,而不考虑这些子序列在原序列中的相对位置。

        最短路径问题,如在图论中寻找两点之间的最短路径,也是动态规划算法的一个典型应用场景。这类问题在计算机网络、交通规划以及许多其他领域中都非常重要。通过动态规划,我们可以高效地计算出在复杂网络中两点之间的最短路径,从而为实际问题提供解决方案。

        编辑距离问题则关注于字符串之间的相似度。它计算将一个字符串转换为另一个字符串所需的最少编辑操作次数,这些操作包括插入、删除和替换字符。编辑距离在自然语言处理、拼写检查和生物信息学等领域有着广泛的应用。

        斐波那契数列是另一个动态规划算法的经典案例。通过递归关系计算斐波那契数列的值时,动态规划可以显著提高效率,避免了重复计算。这个数列不仅在数学上具有重要意义,而且在计算机科学、生物学和艺术设计等领域也有着广泛的应用。

        矩阵链乘法问题要求我们确定矩阵连乘积的最优计算顺序,以最小化乘法次数。这个问题在计算机图形学、线性代数以及任何需要大量矩阵运算的领域中都非常重要。动态规划算法能够帮助我们找到最优的乘法顺序,从而提高计算效率。

        最后,股票买卖问题是一个金融领域的应用实例。在这个问题中,我们需要确定在一系列交易中如何选择买卖时机以最大化利润。动态规划算法可以帮助我们分析历史数据,预测市场趋势,并制定出最优的交易策略。

        在应用动态规划时,我们通常需要定义状态和状态转移方程。状态代表了问题解决过程中的某个阶段,而状态转移方程则描述了如何从一个状态转移到另一个状态。通过迭代或递归的方式,我们可以逐步构建出问题的最优解。动态规划的关键在于识别问题的子结构和重叠子问题,以及如何存储中间结果以避免重复计算,从而在保证解的质量的同时,大幅度提升求解效率。

讲述机器人运动规划原理的经典书籍。 《规划算法》目录: 第Ⅰ部分 介绍性的资料  第1章 绪论   1.1 从规划(的过程)到规划(的结果)   1.2 实例与应用   1.3 规划的基本组成   1.4 算法规划器与规划    1.4.1 算法    1.4.2 规划器    1.4.3 规划   1.5 本书的组织安排  第2章 离散规划   2.1 离散可行规划简介    2.1.1 问题表述    2.1.2 离散规划的实例    2.2 可行规划的搜索    2.2.1 一般前向搜索    2.2.2 特殊前向搜索    2.2.3 其他搜索方案    2.2.4 搜索方法的统一描述   2.3 离散最优规划    2.3.1 最优定长规划    2.3.2 不指定长度的最优规划    2.3.3 再论Dijkstra算法   2.4 用逻辑来表示离散规划    2.4.1 类似STRIPS的表示    2.4.2 转换到状态空间表示   2.5 基于逻辑的规划方法    2.5.1 部分规划空间中的搜索    2.5.2 建立规划图    2.5.3 满足性规划   进一步阅读   习题   实现 第Ⅱ部分 运动规划  第3章 几何表示与变换   3.1 几何建模    3.1.1 多边形与多面体模型    3.1.2 半代数模型    3.1.3 其他模型   3.2 刚体变换    3.2.1 一般概念    3.2.2 二维变换    3.2.3 三维变换   3.3 物体运动链的变换    3.3.1 二维运动链    3.3.2 三维运动链   3.4 运动树的变换   3.5 非刚体的变换   进一步阅读   习题   实现  第4章 位形空间   4.1 拓扑的基本概念    4.1.1 拓扑空间    4.1.2 流形    4.1.3 路径与连通   4.2 位形空间    4.2.1 二维刚体:SE(2)    4.2.2 三维刚体:SE(3)    4.2.3 物体的链与树   4.3 位形空间障碍物    4.3.1 基本运动规划问题    4.3.2 显式建模Cobs:加:平移情况    4.3.3 显式建模Cobs:一般情形   4.4 闭运动链    4.4.1 数学概念    4.4.2 R2上的运动链    4.4.3 定义一般连杆组的簇   进一步阅读   习题   实现  第5章 基于采样的运动规划  第6章 组合运动规划  第7章 基本运动规划的扩展  第8章 反馈运动规划 第Ⅲ部分 决策论规划  第9章 基本永生理论  第10章 序贯决策理论  第11章 传感器与信息空间  第12章 存在感测不确定性条件下的规则 第Ⅳ部分 微分约束条件下的规划   第13章 微分模型  第14章 微分约束条件下基于采样的规划  第15章 系统理论与分析技术
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大雨淅淅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值