规划算法

本文介绍了Dijkstra算法,这是一个用于找到图中单源最短路径的算法。通过逐步递增路径长度的方式,从源点开始计算到各个顶点的最短路径,最终得出所有顶点的最短路径长度。
摘要由CSDN通过智能技术生成

1.Dijkstra算法,典型的单源最短路径算法。

Dijkstra提出按各顶点与源点v间的路径长度的递增次序,生成到各顶点的最短路径的算法。既先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v 到其它各顶点的最短路径全部求出为止。

单源最短路径,给定一个带权有向图G=(V,E),其中每条边的权是一个实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到其他所有各顶点的最短路径长度。这里的长度就是指路上各边权之和。

Dijkstra::Dijkstra()
{
    const int init_map[5][5] = {
  {0,6,INT_MAX,1,INT_MAX},
        {6,0,5,2,2},
        {INT_MAX,5,0,INT_MAX,5},
        {1,2,INT_MAX,0,1},
        {INT_MAX,2,5,1,0}};
    string visit ="";
    string node = "abcde";
    string unvisit = node;
    map<char,int> my_map;  //存储最短路径信息
    for(auto r:unvisit){
        if (r == unvisit[0]
讲述机器人运动规划原理的经典书籍。 《规划算法》目录: 第Ⅰ部分 介绍性的资料  第1章 绪论   1.1 从规划(的过程)到规划(的结果)   1.2 实例与应用   1.3 规划的基本组成   1.4 算法规划器与规划    1.4.1 算法    1.4.2 规划器    1.4.3 规划   1.5 本书的组织安排  第2章 离散规划   2.1 离散可行规划简介    2.1.1 问题表述    2.1.2 离散规划的实例    2.2 可行规划的搜索    2.2.1 一般前向搜索    2.2.2 特殊前向搜索    2.2.3 其他搜索方案    2.2.4 搜索方法的统一描述   2.3 离散最优规划    2.3.1 最优定长规划    2.3.2 不指定长度的最优规划    2.3.3 再论Dijkstra算法   2.4 用逻辑来表示离散规划    2.4.1 类似STRIPS的表示    2.4.2 转换到状态空间表示   2.5 基于逻辑的规划方法    2.5.1 部分规划空间的搜索    2.5.2 建立规划图    2.5.3 满足性规划   进一步阅读   习题   实现 第Ⅱ部分 运动规划  第3章 几何表示与变换   3.1 几何建模    3.1.1 多边形与多面体模型    3.1.2 半代数模型    3.1.3 其他模型   3.2 刚体变换    3.2.1 一般概念    3.2.2 二维变换    3.2.3 三维变换   3.3 物体运动链的变换    3.3.1 二维运动链    3.3.2 三维运动链   3.4 运动树的变换   3.5 非刚体的变换   进一步阅读   习题   实现  第4章 位形空间   4.1 拓扑的基本概念    4.1.1 拓扑空间    4.1.2 流形    4.1.3 路径与连通   4.2 位形空间    4.2.1 二维刚体:SE(2)    4.2.2 三维刚体:SE(3)    4.2.3 物体的链与树   4.3 位形空间障碍物    4.3.1 基本运动规划问题    4.3.2 显式建模Cobs:加:平移情况    4.3.3 显式建模Cobs:一般情形   4.4 闭运动链    4.4.1 数学概念    4.4.2 R2上的运动链    4.4.3 定义一般连杆组的簇   进一步阅读   习题   实现  第5章 基于采样的运动规划  第6章 组合运动规划  第7章 基本运动规划的扩展  第8章 反馈运动规划 第Ⅲ部分 决策论规划  第9章 基本永生理论  第10章 序贯决策理论  第11章 传感器与信息空间  第12章 存在感测不确定性条件下的规则 第Ⅳ部分 微分约束条件下的规划   第13章 微分模型  第14章 微分约束条件下基于采样的规划  第15章 系统理论与分析技术
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值