矩阵 向量 线性变换 基变换

线性变换:

1.features

函数的一种比较 “花哨” 的说法,只不过它接收一个向量,并输出一个向量

但是满足线性变换还需要满足以下条件

1.  

2. 

=============================================================

参考百度百科:https://baike.baidu.com/item/%E7%BA%BF%E6%80%A7%E5%8F%98%E6%8D%A2/5904192?fr=aladdin

线性空间V上的一个变换A称为线性变换,对于V中任意的元素αβ和数域P中任意k,都有

A(α+β)=A(α)+A(β

A (kα)=kA(α)

=============================================================

若我们记录空间中所有的向量,都只记录终点,空间中所有向量都经过L进行线性变换,我们很难用图像描述所有的向量,只能抽一些终点在特定直线上的向量作为代表,例如我们可以抽取终点 在 经过整数刻度的直线 上的向量作为代表,如下图:

这样我们可以通过网格的变换来直观地呈现空间中向量的变换,甚至整个空间的形状的变换如下图:

所以线性变换在图像上的直观呈现就是:

1.变换前后空间中的网格线 仍然是等间距的、平行的直线

2.零向量经过线性变换后仍然是零向量,即线性变换前后空间的原点不会改变

Grid lines remain parallel and evenly spaced

2.how to describe liner transformation numerically?

我们只需要记录变换后基向量的坐标即可

假设有一个向量

根据线性变换的特性 平行且等距,变换后的 v 和变换后的 i 和 j 仍然满足以上关系,另外也可以根据上述公式特性进行以下推导:

所以我们只需要记录变换后的基向量即可计算出变换后所有向量的坐标,如下图:

由上图可知,向量 是向量 和向量  的线性组合,那么变换后的向量 仍然是变换后的向量 和变换后的向量 同样的线性组合。

以上一切都是在说,一个线性变换,这里以二维变换为例,一个线性二维变换只需要四个数字完全确定,其中2个数字描述变换后的基向量 在原始坐标系中的坐标,另外2个数字描述变换后基向量 在原始坐标系中的坐标。这样我们就将4个数字封装到一个2x2的格子中,称为2x2的矩阵,所以这里给出了描述矩阵的另一种方式,矩阵(可以延伸到非方针)描述的一种线性变换,矩阵的每一列 描述的是 经历这种线性变换后 的基向量在原始坐标系中的新的坐标,如下图:

矩阵

每个矩阵都对应一种线性变换,那么我们如何得到  将这种线性变换作用到向量后的结果,我们只需要将向量的坐标分别乘以矩阵的每一列(变换后的基向量坐标),然后在相加即可,我们甚至可以将其定义为矩阵的乘法:

重复上述说法,我们完全可以将矩阵的每一列看做变换后的基向量,如下图:

多个矩阵相乘可以看做多个线性变换的复合变换:

基变换

我们使用坐标表示向量,实际上包含两个隐含假设,

即基向量如上图所示,但是如果选取不同的基向量会怎么样呢,比如你的朋友Jennifer使用一下不同的基向量 b1b2

Jennifer的基向量在我们的坐标系中的坐标为  

在她自己坐标系中的坐标为   

 

1.How do you translate between coordinate systems?

如何在不同的坐标系中进行坐标变换呢?

假如Jennifer用(-1, 2)描述一个向量,那么我们应该如何用我们的坐标系来描述这个向量呢?

我们可以用-1乘以b1向量在我们坐标系的坐标,2乘以b2向量在我们坐标系的坐标,然后相加:

这样我们就可以由一个向量在Jennifer坐标系下的坐标,就能推算出它在我们坐标系下的坐标,即将Jennifer的语言翻译成我们的语言。

 

如果相反方向会怎么样的,例如我们用(3, 2)描述一个向量,那么在Jennifer的坐标系中怎么描述这个向量?

这个矩阵可以将我们坐标系中基向量变换成Jennifer坐标系中的基向量,Jennifer坐标系的基向量在我们坐标系中的坐标就是(2,1)、(-1, 1),根据矩阵的定义,矩阵的每一列代表线性变换后的坐标系的基向量在原始坐标系的坐标而来。

这个矩阵可以将Jennifer坐标系中的基向量变换为我们坐标系中的基向量,同理根据矩阵的定义,矩阵的每一列代表,线性变换后的坐标系的基向量(我们坐标系的基向量)在原始坐标系(Jennifer)中的坐标,所以我们坐标系的基向量i、j在Jennifer坐标系中的坐标分别是(1/3, -1/3)、(1/3, 2/3)

回到原来的问题:我们用(3, 2)描述一个向量,那么在Jennifer的坐标系中怎么描述这个向量?

如上图所示,在Jennifer眼中此向量的坐标为(5/3, 1/3)

 

以上所有内容均参考3blue1brown官方发布的视频,它们在中国的官方账号是在bilibili,线性代数这一节的网址如下:  https://space.bilibili.com/88461692/channel/detail?cid=9450

Youtube网站的官方账号如下:

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
矩阵论引论 出版时间:2013年版 内容简介   本书全面系统地介绍了与工程技术联系密切的矩阵理论及其应用,注重理论和应用的结合,具有工科教材的特点和方法。全书共6章,分别介绍了线性空间与线性变换、内积空间、矩阵的若尔当标准形及其分解、矩阵分析及应用、特征值的估计、广义逆矩阵。各章后面配有一定数量的习题。本书可作为理工科院校硕士研究生和高年级本科生的教材,也可作为有关专业的教师及工程技术人员的参考书。 目录 前言 第1章 线性空间与线性变换 1.1 线性空间 1.2 变换与坐标变换 1.3 线性子空间 1.4 线性空间的同构 1.5 线性变换 1.6 线性变换矩阵表示 1.7 特征值与特征向量 1.8 不变子空间 习题1 第2章 内积空间 2.1 实内积空间 2.2 正交及正交补 2.3 两个特殊的线性变换 2.4 欧氏空间的同构 2.5 点到子空间的距离与最小二乘法 2.6 复内积空间 2.7 正规矩阵 2.8 Hermite二次型 习题2 第3章 矩阵的若尔当标准形及其分解 3.1 λ-矩阵及其标准形 3.2 矩阵的若尔当标准形 3.3 矩阵的最小多项式 3.4 矩阵的若干分解 习题3 第4章 矩阵分析及应用 4.1 向量的范数 4.2 矩阵的范数 4.3 矩阵及其极限 4.4 矩阵幂级数 4.5 矩阵函数 4.6 矩阵的微分和积分 4.7 矩阵函数的应用 习题4 第5章 特征值的估计 5.1 特征值的界的估计 5.2 圆盘定理 5.3 谱半径的估计 习题5 第6章 广义逆矩阵 6.1 ﹛1﹜-广义逆矩阵A- 6.2 M-P广义逆矩阵A+ 6.3 广义逆矩阵在线性方程组求解中的应用 习题6 部分习题参考答案 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值