二重积分和雅可比行列式

我们以二重积分为例进行说明,首先说结论:

一、结论

若x = x(u, v), y = y(u, v)存在偏导数,则二阶雅可比行列式为 =  =

dxdy = |J2| dudv,  (J2的绝对值),且

其中积分区域和积分区域是一一对应的。

二、理解

二重积分的定义中指出,将积分区域任意分割成n个小的闭区域:

Δσ1, Δσ2, …, Δσn,

其中Δσi表示第i个小闭合区域的面积,在闭合区域上取一点(ξi, ηi), 这一点的函数值与区域Δσi的乘积的总和为,若当各小闭合区域的直径中的最大值λ→0时,这个和的极限总存在,且与区域Dxy的分法及点(ξi, ηi)的取法无关,那么函数f(x, y)在区域Dxy上的二重积分记做:

dσ为小闭合区域的面积,假设我们将Dxy分隔为一个一个小矩形区域,每一小块积分区域Δσi 在uv坐标系中都对应一块积分区域Δσi',它们是一一对应的,并且Δσi=|J2|Δσi',|J2| 是雅可比行列式的绝对值,可能是常量,但一般情况下是一个变量,所以我们可以保证以下等式成立:

在xy坐标系中第i块积分区域上任取一点(ξi, ηi),都能在uv坐标系中的第i块积分区域中找到一点(ξi',ηi'),并满足,另外我们知道,所以上述等式成立,那么对上述等式做累加,也固然成立,即:

'

故,两边取极限,二重积分也就相等,即一中结论成立。

下面我们主要说明为什么dxdy = |J2| dudv:

解释1

首先我们应该怎么理解dxdy,在xy坐标系中,dx和dy可以看成是小矩形的长和宽,它们相互垂直,dxdy可以简单的理解为两个标量相乘求面积,用来代替Δσi,但是在uv坐标系中,du和dv相互垂直,但是dx和dy代表的是一个平行四边形的两条边,并不垂直,,显然它们并不一定垂直,那么在uv坐标系中我们不能讲dxdy简单的两个标量相乘,而是应该理解为两个向量叉乘所得向量的模(面积):

                     图一:

                                                 
两边取模,dxdy = |J2|dudv

https://www.zhihu.com/question/274450639

另外也可以参考MIT的微积分课程:

麻省理工学院公开课:多变量微积分-变量的变化-网易公开课

18课24分钟,更简单的描述过程。

其实在xy坐标系中我们也可以将dxdy理解为向量叉乘的模,只不过他们夹角是90度,所以等于标量乘积。

注:以上描述非常可能是错误的,并没有参考正规资料,只是一个知乎网友提供的描述(见上述链接),我并不确定是否能把dxdy、dudv写成向量的形式,所以请批判性的参考

解释2

参考:https://wenku.baidu.com/view/f56aa732b94ae45c3b3567ec102de2bd9605de8b

我们将积分区域Dxy按照上图右进行划分成N多个小块,根据微积分的定义,计算结果和微分方式无关,所以我们把它为分成这种扭曲的方式,每一个扭曲的小块一一对应uv坐标系中每一个规则的矩形,切他们的面积比值为|J|,也就是dA = |J|dudv

由于积分的计算结果与积分区域的划分方式无关,所以,其中,即

以下是上上次编辑此篇博客时留下的,但是没有图,可以忽略。

下面通过 直观的解释来理解为什么dxdy = |J2| dudv, 我们取积分区域里面的一点(x, y)那么在uv坐标系下与之对应的一点为(u, v),,很显然 (x, y)到(u, v)的坐标变换不是线性的,但是在积分区域的某一个具体点  的很小的一个范围内,可以近似线性的,  因为其偏导数几乎不变,我们可以把看成是常数,那么在(x, y)这一点附近的很小区域内,进行的坐标变换就可以看做是线性变换,  (x, y) 附近的积分区域, 经过坐标变换后,面积将改变,变换前后面积的比值即是,雅可比行列式的值,(动图待制作)

### 回答1: 在二重积分中,直极互化是一种常用的坐标变换方法。当我们需要通过直极坐标变换来求解二重积分时,需要将原坐标系中的被积函数表示成直角坐标极坐标之间的关系。在这个过程中,变换的关键是确定直极坐标系中的极径r。 要求出r,我们需要根据题目给出的具体情况几何图形,分析出被积函数中某个变量的极坐标表示。常见的极坐标表示有以下几种情况: 1. 圆形区域:如果被积函数是在一个圆形区域上进行积分,可以使用$r = \sqrt{x^2+y^2}$来表示极径。此时,r即为点(x,y)到原点的距离。 2. 扇形区域:如果被积函数是在一个扇形区域上进行积分,可以使用$r = f(\theta)$来表示极径,其中f为关于角度θ的函数。此时,r即为点(x,y)到极轴的距离。 3. 特殊曲线区域:在某些特殊情况下,被积函数所在区域可以通过特定的方程表示。此时,需要根据方程解算得到r的表达式。 综上所述,求解二重积分中的r需要根据具体问题分析被积函数区域的关系,确定极径r的表示方法。对于不同的区域函数,r的表达式可能会有所差异。因此,在解题过程中,我们需要根据具体情况确定合适的极坐标表示,并结合直极互化的转换公式,将被积函数写成r角度的函数形式,进而进行积分计算。 ### 回答2: 在二重积分直极互化中,求出r的方法取决于坐标系的选择。通常情况下,我们会使用极坐标系来求解r。 在极坐标系下,一个点的坐标表示为(r, θ),其中r是距离原点的距离,θ是与正x轴的夹角。在二重积分中,我们需要确定被积函数的积分区域。 假设我们需要计算的面积或体积位于极坐标系中的极坐标区域D内,则D可以用以下方式表示:D={(r,θ)| a≤r≤b, α≤θ≤β}。 求出r的方法可以通过极坐标系下的限制条件来确定。在D范围内,r的取值范围由ab确定,即a≤r≤b。 举个例子,如果我们要计算极坐标区域D内的面积,那么r的取值范围由ab决定,即a≤r≤b。对于每一个r值,θ的取值范围由αβ决定,即α≤θ≤β。然后我们对被积函数在D范围内进行积分,即∬f(r,θ)dA = ∫βα∫ba r f(r,θ)drdθ。 通过确定极坐标系下积分的范围,我们可以得到r的具体取值,并进行二重积分计算。 ### 回答3: 在二重积分直极互化中,r通常代表一个二维平面上的点到极坐标原点的距离。 对于一个给定的点P(x, y),我们可以使用勾股定理来求出该点到原点的距离r。勾股定理可以表示为:r² = x² + y²,其中r为点P到原点的距离,x为点P的横坐标,y为点P的纵坐标。 所以,我们可以通过计算r的平方根来得到r的值:r = √(x² + y²)。 当我们将二重积分转换到极坐标系时,通常我们会用极坐标参数r来表示原来的xy变量。我们可以将原函数中的xy分别用rθ来表示,其中θ代表点P与正半轴的夹角。在进行积分计算时,需要注意到变量的替换可比行列式的变换。通过适当的变量替换可比行列式的计算,我们可以将原来的二重积分转换为在极坐标下的积分形式。 因此,在二重积分直极互化中,我们可以通过使用极坐标变量r来表示一个点到极坐标原点的距离,并将原函数通过变量替换可比行列式的计算来进行转换。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值