前言:基变换在做图像压缩等计算的时候,经常用到。基变换和相似矩阵的定义也有非常密切的联系:基变换的本质就是变换了基向量的一个关联计算,在最小二乘的算法里面,通过选择正确的基可以将计算进行简化。
而正确的的特征向量和特征值的确定,又和本节的基变换互为相互印证的关系。
基变换的标准定义:
基变换的实质是, 将某向量空间中的元素v 由有序基 F[w1,w2...vn] v=x1w1+x2w2 +...xnwn的线性组合,表示成另一有序基E[v1,v2,...vn]即v=y1v1+y2v2+...ynvn的线性组合
1基向量的来源
在二维向量空间有一个向量如下:
用单位基向量的缩放表示如下:【^i】和【^j】是单位基向量