PID 控制器原理及实战

原理

拿走不客气:看不懂的 直接看例子,回来就能看懂了。

PID 控制器通过比例(P)、积分(I)和微分(D)三项来调节系统输出,以使 系统误差(设定值与实际值之间的差异) 尽快趋近于零,用于闭环控制系统中作为控制器。

闭环控制系统
在这里插入图片描述

在这里插入图片描述

【总结】

  • 比例项(P): 误差增大时立即产生较大控制信号,主要影响 系统响应速度
  • 积分项(I): 用于 消除稳态误差,但必须防止在输出饱和时的 “积分饱和”,通常通过积分限幅或 抗饱和设计 来实现。
  • 微分项(D): 预测误差变化趋势,对系统突发扰动做出反应,同时由于噪声敏感,需加 低通滤波器 平滑输出。
  • 增益调整: 各项增益的设置基于系统特性和期望响应,不能简单地认为误差增大时各项增益就应该随之“增大”或“减小”,而是需要在实际调试过程中权衡系统响应速度、稳定性以及抗噪声能力。

【补充说明】

  1. 积分项消除稳态误差: 积分项通过累计持续存在的误差来补偿比例项的不足。例如,在温控系统中,室内漏风导致温度始终低于目标值,积分项累计的误差最终促使系统输出额外的控制力,使温度达到预期值。
  2. 微分项的作用: 微分项生成的是反向调整力,用于抑制误差变化过快而可能引发的过冲或振荡。 它通过预测误差的变化趋势来提供阻尼作用,但 不会与积分项互相抵消,而是协同工作:积分项用于消除稳态误差,微分项用于平滑动态响应
  3. 积分抗饱和机制: 在加热器等执行器达到输出极限时,通过限制积分项的累积或进行反馈校正,避免因积分饱和引起的过冲问题,使得系统在解除饱和状态后能更快恢复到目标温度。
  4. 微分低通滤波: 用于滤除传感器噪声,使得微分项只反映真实的温度变化率,从而避免因噪声引起的不稳定调整,确保系统响应更加平滑和稳定。

通过综合调整这些参数,可以设计出既快速又稳定的 PID 控制器,满足不同系统的控制需求。

各项的原理、计算方法以及在误差变化时它们的作用

1. 比例项(P)

基本原理: 比例项直接与当前误差成正比。其控制作用可以表达为

u P = K P × e ( t ) u_P = K_P \times e(t) uP=KP×e(t)

其中, K P K_P KP 是比例增益, e ( t ) e(t) e(t) 是当前误差。当误差增大时,比例项输出也会相应增大,从而使控制器输出快速响应错误变化。

增益调节:

  • 较高的 K P K_P KP 响应更迅速,但可能导致 系统超调或振荡
  • 较低的 K P K_P KP 响应较缓,但系统 稳定性更高

因此, K P K_P KP 的设定主要取决于系统的动态特性和期望响应速度,通常通过实验或模型分析来确定最佳值,而不是简单地在误差增大时“增大”或“减小”。

2. 积分项(I)

基本原理: 积分项对过去的误差进行累计,从而消除稳态误差。其计算公式为

u I = K I × ∫ 0 t e ( τ )   d τ u_I = K_I \times \int_0^t e(\tau) \, d\tau uI=KI×0te(τ)dτ

当系统长期存在小误差时,积分项会不断累积,直到消除该误差。

  • 误差增大时的作用: 如果误差突然增大,积分项的累计速度会加快,但其作用并不是立即的大幅度调整,而是 逐步补偿持续存在的偏差
  • 积分抗饱和(Anti-Windup): 当控制器输出受到限制(例如执行器饱和)时,积分项如果持续累加可能导致“积分饱和”(Windup),使系统恢复过程变慢。为防止这一现象,可以采取以下措施:
    • 积分限幅: 对积分项的累计值设定上限和下限。
    • 反馈抗饱和: 当输出饱和时,暂停或调整积分项的积分操作,使积分部分与实际可行的控制输出相匹配。

例如,在温度控制系统中,当加热器达到最大功率时,继续积分会导致系统过度“记忆”错误,此时通过抗饱和技术抑制积分的继续累积,有助于系统在条件解除后迅速恢复正常控制。

3. 微分项(D)

基本原理: 微分项关注误差的变化率,即误差的导数,提供了一种预测性修正。计算公式为
u D = K D × d d t e ( t ) u_D = K_D \times \frac{d}{dt} e(t) uD=KD×dtde(t)

当误差变化较快(例如系统出现突然扰动)时,微分项会迅速作出反应,提前抑制误差的进一步恶化。

  • 误差增大时的作用: 如果误差突然增大,微分项会根据误差上升的速率产生一个反向的调整力,从而“平滑”响应,防止过冲。
  • 微分低通滤波: 由于微分项对噪声非常敏感,实际实现时通常会在微分计算前加上低通滤波器。
    • 低通滤波器作用: 滤除高频噪声,确保微分项仅反映真正的误差变化趋势,而不是噪声的快速波动。
    • 实现方法: 可以用一阶滤波器(例如以时间常数 τ D \tau_D τD 设计的低通滤波器)平滑微分信号,从而提高系统鲁棒性。

一阶低通滤波器(First-order Low-pass Filter)在控制系统和信号处理中非常常见,它的本质就是: 让低频信号通过,抑制高频信号
“低通” = Low-pass filter,意思是:

  • 低频信号(信号变化慢)可以通过
  • 高频信号(信号变化太快)会被削弱/抑制

假设 x[n] 是一个跳跃很快的信号:x: 0 → 10 → -5 → 7 → 0, 经过低通滤波器,输出就会变得平滑很多: y_filtered: 0 → 2 → 1 → 2.5 → 1.8。也就是说:“滤波器让信号变化速度变慢”,就像一个“惯性”系统。
想象你是司机,脚在控制油门(控制器),眼睛在观察车速(系统响应):

  • 没滤波:你一看到速度掉一点点,立刻猛踩油门 → 系统震荡
  • 有滤波:你反应慢一点,不理会细微速度抖动 → 行驶更平稳

一阶低通滤波器的常见形式是: τ ⋅ d y / d t + y = x τ·dy/dt + y = x τdy/dt+y=x

  • x 是输入(未滤波的信号)
  • y 是输出(滤波后的信号)
  • τ 是时间常数(越大滤波越慢)

对应离散系统,常写成: y[n] = (α * x[n]) + (1 - α) * y[n-1] 或者 y_filtered = (N * dt * x + y_prev) / (1 + N * dt)

  • N 越大 → 响应越快(滤波越弱,更接近原始信号)
  • N 越小 → 响应越慢(滤波更强,抑制高频)

如果 N 设得过小,低通滤波器会强烈抑制微分项,导致滤波后的微分项很平滑(→ 接近零),微分项几乎没参与控制。

举例分析:温度控制系统(例子很重要~)

假设我们设计一个 PID 控制器用于控制室内温度,目标设定为 22°C,而当前温度为 20°C,误差 e ( t ) = 2 e(t) = 2 e(t)=2°C。

  • 比例项: 如果 K P = 5 K_P = 5 KP=5,则比例输出为

    u P = 5 × 2 = 10 u_P = 5 \times 2 = 10 uP=5×2=10

    表示当前需要较大的调整来提高温度。

  • 积分项: 假设过去一段时间内温度一直低于设定值(稳态误差),积分累计了较大的误差。如果 K I = 1 K_I = 1 KI=1,且积分累计达到 3,则

    u I = 1 × 3 = 3 u_I = 1 \times 3 = 3 uI=1×3=3

    积分项如何消除稳态误差:积分项通过不断累积误差,在比例项无法单独调整到目标温度时,提供额外的“推动力”。

    • 稳态误差产生的原因: 在温控系统中,假设室内由于漏风或其他外界干扰,系统维持在一个平衡点,但这个平衡点低于目标温度。例如:目标温度为 22℃,但由于漏风,室内温度可能稳定在 20℃。此时,比例项可能输出一个正值,使得加热器开始工作,但由于漏风带走的热量刚好和加热器补偿的热量平衡,温度长期维持在 20℃,系统存在稳态误差 2℃
    • 积分项的作用: 积分项通过不断累积误差来计算累计偏差: u I = K I ∫ 0 t e ( τ ) d τ u_I = K_I \int_{0}^{t} e(\tau) d\tau uI=KI0te(τ)dτ。在温控例子中,当温度长期低于 22℃时,每一时刻的误差(2℃)都会被累加。随着时间的推移,这个积分值会不断增加,直到输出的控制量足够大,从而克服漏风带来的影响,让室内温度逐步上升到目标温度。因此,当比例项的输出不足以消除漏风带来的热量损失时,积分项会“记住”这个累积的误差,并在一定时间后输出额外的控制力,推动温度进一步上升。
    • 举例说明: 假设温控系统目标为 22℃,实际稳定在 20℃,误差始终为 +2℃。
      • 初期: 比例项 u P = K P × 2 u_P = K_P \times 2 uP=KP×2 已经启动加热,但由于环境漏风,温度并未上升。
      • 累积: 积分项开始积累这个 2℃ 的误差,如果 K I K_I KI 适中,经过一段时间积分量积累到某个值,使得 u I = K I × ( 累计误差 ) u_I = K_I \times (\text{累计误差}) uI=KI×(累计误差) 增加控制力。
      • 结果: u P + u I u_P + u_I uP+uI 超过一个临界值后,加热器输出足够的热量克服漏风带走的热量,使室内温度上升到预期值 22℃。

    但如果 加热器功率有限,导致控制信号被限制,积分限幅或抗饱和机制 会防止积分项继续增长,避免在系统恢复后造成温度过冲

    积分抗饱和机制如何工作?

    • 限制积分项累计: 当检测到控制信号已经饱和时,可以暂停或限制积分项的累积,防止积分部分继续增加。
    • 反馈校正: 在某些实现中,会根据实际输出与计算输出之间的偏差,对积分部分进行反馈校正,快速将积分值拉回到合适范围内。

    温控系统中的例子:

    • 假设温控目标为 22℃,但由于漏风或环境扰动,温度一度下降到 20℃。为了补偿这个 2℃ 的误差,PID 控制器的积分项会开始累积误差。
    • 然而,如果加热器已经在最大功率状态,额外的积分累计并不会转化为更高的加热功率,而只是“堆积”在控制器内部。
    • 当环境条件改善时,这个过大的积分项可能会导致温度迅速上升超过 22℃,引发过冲。
    • 采用抗饱和机制后,当检测到加热器输出已达上限时,积分项的累积将被限制,从而避免这种不必要的“记忆效应”,使系统能平稳地恢复到目标温度
  • 微分项: 若温度变化速率较快(例如 突然有冷风进来导致温度下降),微分项能预测这一趋势。如果 K D = 2 K_D = 2 KD=2 且温度下降速率为 -0.5°C/s,则

    u D = 2 × ( − 0.5 ) = − 1 u_D = 2 \times (-0.5) = -1 uD=2×(0.5)=1

    此项起到预警和抑制过冲作用。

    微分项的具体作用及其与积分项的关系?

    • 微分项的作用: 微分项关注误差的变化率,即当前误差相对于之前状态的变化速度。其计算公式为: u D = K D d e ( t ) d t u_D = K_D \frac{de(t)}{dt} uD=KDdtde(t)。当误差突然发生变化(例如温度迅速下降或上升)时,微分项会立刻反应,并产生一个与误差变化方向相反的调整力。
      • 防止过冲和振荡: 如果温度变化过快,微分项会产生一个反向力(例如误差上升很快时,输出一个负的调整信号),起到“阻尼”作用,减少系统过冲或震荡的可能性。
      • 预测未来趋势: 微分项可以看作对未来一小段时间内误差变化的预估,通过提前反应,平滑系统响应。
    • 与积分项的关系: 积分项主要负责消除长期存在的稳态误差,而微分项则对系统的瞬间变化作出反应,两者在时间尺度和功能上有所不同:
      • 互补作用: 微分项不会与积分项“互冲掉”,而是共同作用于控制信号。积分项积累误差并推动系统修正稳态偏差,而微分项则在出现急剧变化时提供阻尼,防止系统反应过于激烈。
      • 平衡系统动态: 在一些情况下,积分项可能由于持续累积而导致系统响应迟滞或过冲,而微分项可以抑制这种现象,使系统响应更加平稳。
      • 设计时的调试: 调试 PID 控制器时,往往需要通过经验调整 K I K_I KI K D K_D KD 的值,使得二者配合得当:既能消除稳态误差,又能抑制快速变化带来的负面影响,而不会相互抵消对方的正向作用。

    仍以温控系统为例:

    • 积分项作用: 当室内温度长期低于目标温度时,积分项不断累积误差,从而推动加热器输出更大功率。
    • 微分项作用: 如果 由于某个瞬间外部风速突然增大导致温度急剧下降,微分项会立刻检测到温度下降的速率,并输出一个反向信号,提醒系统不要过快调节,避免温度“过补”而反弹到过高的状态
    • 协同工作: 最终,比例项提供即时反应,积分项消除稳态偏差,而微分项则平滑和预防突发变化,两者各司其职,共同稳定系统温度。

    但实际中,微分项经过 低通滤波 后,可能调整为 -0.8,进一步减少噪声带来的误差放大效应。

    低通滤波(Low-Pass Filtering)的作用?
    在实际温控系统中,温度传感器的读数通常会受到噪声干扰。直接计算误差的变化率(即微分项)时,这些 高频噪声会被放大,导致微分项输出异常,从而使控制器反应过于敏感,出现不稳定的情况。
    低通滤波如何工作:

    • 滤除高频噪声: 低通滤波器 允许低频信号(代表真实的温度变化)通过,而衰减高频信号(大多为噪声)。
    • 平滑微分信号: 经过低通滤波后的误差信号更为平滑,计算出的微分项也更为稳定,从而防止控制器因噪声引起不必要的反向调整。

    温控系统中的例子:

    • 假设温度传感器由于外部电磁干扰或其他因素,数据中夹杂了一些瞬间的噪声
    • 如果直接使用这些数据计算微分项,即使实际温度变化较平缓,噪声也可能使得误差的导数值剧烈波动,导致 PID 控制器瞬间输出一个较大的反向调整力,从而使温度波动剧烈
    • 通过在微分项前添加一个低通滤波器,只有较平滑、低频的真实温度变化会被传递给微分计算,从而避免噪声对系统的干扰,保证系统响应平稳。
  • 总控制输出: 总输出 u u u 为三项之和

    u = u P + u I + u D = 10 + 3 − 0.8 = 12.2 u = u_P + u_I + u_D = 10 + 3 - 0.8 = 12.2 u=uP+uI+uD=10+30.8=12.2

    该输出指示加热器需要提高功率,但抗饱和机制保证当加热器功率达到上限时,积分项不会继续累积,从而避免未来温度过冲。

还有一个非常经典的水箱加水的例子,参考 PID控制算法原理(抛弃公式,从本质上真正理解PID控制)
还有一个控制无人机飞行高度的例子,参考 通俗易懂的 PID 控制算法讲解
还有一个跑到目标位置的例子,参考 简易PID算法的快速扫盲(超详细+过程推导+C语言程序)

调整各项增益值

原则上,误差增大时:

  • 比例项: 增大误差直接使得比例输出增大,其 作用即时有效,但过高的比例增益可能引起系统振荡。
  • 积分项: 对于 短期突变的误差,不宜立即累积过多积分;而对于 长期持续的误差,则需要适当的积分作用来消除稳态偏差
  • 微分项: 能迅速响应误差变化率,但由于噪声问题,需通过低通滤波器调节,防止引入过多高频信号。

增益调整的目标: 调整各项增益的主要目标在于在 保证系统响应迅速的同时避免过冲、振荡和积分饱和。一般来说:

  • 比例增益 K P K_P KP 应根据系统敏感性确定。
  • 积分增益 K I K_I KI 要足够小以防止饱和,但又要足够大以消除稳态误差。抗饱和设计(例如积分限幅)在积分作用较强时尤为重要。
  • 微分增益 K D K_D KD 则需要结合低通滤波来抑制噪声,确保其对误差变化速率的响应是平滑且真实的。

低通滤波器会抑制高频噪声的影响,但是在 Kd 较大时,控制器对误差变化的敏感性会增大,导致 更大的微分信号 被放大。尽管滤波器会尝试平滑这些高频成分,但如果 Kd 过大,仍然会导致系统对误差波动的反应过度,产生震荡。

  • 如果系统震荡多、超调大 → 增加 Kd
  • 如果系统反应迟钝或过于敏感 → 减小 Kd

在这里插入图片描述

参考 Wiki PID 增益调试方式:PID 控制器
在这里插入图片描述
Ziegler Nicholes reaction curve method:在这里插入图片描述

Matlab/simulink 中有 PID 组件,然后 PID Tune 可以直接拖动上方的响应时间和稳健特性来自适应调节状态演进(实线)以及 PID 输出的电压(虚线)。

在这里插入图片描述
在这里插入图片描述

开源 PID 库

伪码参考:
在这里插入图片描述
开源库( 都基于固定的 PID 参数,没有内置自适应调节机制 ):

  • 对于 Python,常用的有 python-controlsimple-pid 以及 ivmech/ivPID
  • MATLAB 平台上,可使用官方的 Control System Toolbox;
  • C++ 领域则有功能强大的 ACADO Toolkit 和基于 Eigen 实现的 LQR/PID 示例;
  • 在机器人领域,ROS 提供了 ros_control 及其 PID 插件。

Python 推荐库

1. python-control

python-control

  • 功能:提供连续和离散系统的状态空间、传递函数、零极点增益模型及相关分析与设计(如根轨迹、伯德图、LQR、PID 调谐工具)
  • 安装pip install control
  from control import ss, lqr, ss2tf, rootlocus
  sys = ss(A, B, C, 0)
  K, S, E = lqr(sys, Q, R)       # LQR 设计
  rootlocus(sys * K)             # 根轨迹 PID 调谐辅助

2. simple-pid

simple-pid

  • 功能:轻量级、零依赖的 PID 控制器,仅实现 P、I、D 三项计算,适合实时嵌入式与简单测试,支持积分限幅(钳制)和输出限幅;
  • 安装pip install simple-pid
from simple_pid import PID  # 假设已经安装: pip install simple-pid
import time

Kp,Ki,Kd = 1.0,0.1,0.01  # 指定 Kp, Ki, Kd(三项增益根据系统调节)
pid = PID(Kp, Ki, Kd,
          setpoint=0.0,         # 目标值为 0
          sample_time=0.01,     # 每 0.01 秒计算一次输出
          output_limits=(None, None)  # 不做输出饱和限幅,如需限幅,可填 `(min_u, max_u)`
)

# 下面的 loop 演示如何在仿真或实时控制里使用:
current_time = time.time()
while True:
    current_z = read_sensor_z()   # 获取当前测量值
    control_voltage = pid(current_z)  # 计算控制量(如果距离上次 sample_time 未到则返回上次结果)
    apply_voltage(control_voltage) # 将控制量作用到系统
    time.sleep(0.001)  # 等待下一个采样周期

3. ivPID

ivmech/ivPID

  • 功能:另一款纯 Python 实现的 PID 控制器,API 简洁,支持自动积分限幅和输出限幅;
  • 获取git clone https://github.com/ivmech/ivPIDpip install ivpid

ivPID 控制器的默认实现是 基于系统实时时间 time.time() 进行采样控制(即:每隔 sample_time 秒才更新一次)。但在真实应用(如控制仿真或机器人环境)中,通常有一个明确、固定的采样间隔,比如 dt = 1e-4 秒,只需在每次调用 .update() 时显式提供当前模拟时间,而不让它用 time.time()

from ivPID import PID

pid = PID(Kp=1.2, Ki=1.0, Kd=0.01)  # 初始化 PID 控制器
pid.SetPoint = 0.0  # 目标位置为 0
pid.sample_time = 1e-4  # 设置采样时间为 0.0001 秒
pid.windup_guard = 10  # 设置防积分饱和限制

dt = 1e-4
sim_time = 0.0  # 模拟过程中的时间步

for step in range(num_steps):
    current_z = get_current_z()  # 获取当前输出
	control_voltage = pid.update(feedback_value=current_z, current_time=sim_time)  # 显式传入模拟时间
    apply_control_voltage(control_voltage)
    sim_time += dt  # 手动推进时间

MATLAB 平台

Control System Toolbox

  • 功能:MATLAB 官方工具箱,支持状态空间、传递函数建模,PID 调谐器、LQR、MPC 等多种经典与现代控制方法;可与 Simulink 无缝集成。

    sys = ss(A, B, C, 0);
    K = pidtune(sys, 'PID');         % 自动 PID 调谐
    [K,S,P] = lqr(sys, Q, R);        % LQR 设计
    

Adaptive Tuning

自适应增益方法 旨在根据系统状态或环境变化在线调整 PID 参数,从而提高控制器在非线性或时变系统中的性能。

  • 增益调度(Gain Scheduling):根据系统工作点或外部扰动的大小 预先设计一系列 PID 参数,运行时 根据当前状态选择对应参数。这种方法实现简单,但要求对系统各工况有充分建模或实验数据支持。

    P.A. Tapp A, A Comparion of three self-tuning control algorithms
    在这里插入图片描述
    假设温控系统在不同环境下具有不同的动态特性:

    • 低温环境下: 由于热容大或散热条件较好,温度上升较慢,此时可能需要 较高的比例增益和积分增益 来快速提升温度。
    • 高温环境下: 系统可能处于敏感状态(防止温度过冲),这时需要 降低比例增益,甚至提高微分作用 以抑制过冲。

    通过增益调度,我们可以 预先确定在不同室温(或其他参数,如风速、湿度等)下的最佳 PID 参数组合。实际运行时,系统会根据当前环境条件选择合适的参数,从而提高温控效果。这种方法的优点是实现简单、易于理解,但需要对各工作点进行充分实验或建模。

  • 模型参考自适应控制(MRAC):MRAC 通过设计一个 参考模型(期望系统响应模型),使实际系统的输出跟踪参考模型。当实际输出与参考输出存在差异时,利用自适应律(通常基于 Lyapunov 理论或其他稳定性证明方法)实时调整 PID 参数,使系统响应尽可能接近参考模型。MRAC 对模型精度要求较高,适用于模型已知或可以近似的场合。

    P.A. Tapp A, A Comparion of three self-tuning control algorithms
    在这里插入图片描述
    在温控场景中,假设设计一个参考模型,要求温度响应平滑且无超调。实际温控系统可能受外界扰动(如突发的漏风)影响,响应偏离参考模型。MRAC 算法会 比较实际温度变化和参考模型输出的差距,然后 根据这个偏差在线调整 PID 增益

    • 如果 实际温度上升速度低于参考模型,则自动提高比例和积分增益,以加强加热力度;
    • 如果 温度上升过快或出现过冲,则调整微分增益(或降低比例增益),以抑制系统的动态过激响应。

    这种方法 依赖于参考模型的设计以及自适应律的稳定性保证,能够在一定程度上应对温控系统中的非线性和时变特性。

  • 自整定控制(Self-Tuning Regulator, STR):自整定控制结合了在线系统辨识与控制参数调整。通过实时收集系统数据(如温度、加热器输出等),利用 递归最小二乘法或其他辨识算法估计系统动态模型(如传递函数或状态空间模型)。基于辨识结果,计算出最优 PID 参数,使闭环系统达到预期性能。

    考虑温控系统在实际运行过程中,由于外部环境(如季节、房屋隔热性能变化等)引起系统动态特性发生变化。STR 方法会在线收集温度数据,利用辨识算法得到系统的热响应模型:

    • 当检测到系统响应变慢(可能由于季节性变化引起的散热加剧),则系统辨识结果显示延迟或增益降低,此时可以自动提高 PID 参数,增强加热力度;
    • 当环境变化使得温度上升较快,辨识结果反馈出系统响应增益上升,控制器会适当降低 PID 参数,以避免过冲。

    通过这种方式,STR 实现了根据实际系统动态特性在线调节 PID 参数的能力,从而使温控系统始终保持在较优的调节状态。

  • 模糊逻辑 PID 控制:利用模糊逻辑规则,将输入(如温度误差、误差变化率等)与输出(PID 增益调整量)之间建立模糊关系。设计一组模糊规则,例如“如果温度误差大且上升速度快,则增加微分作用”,或者“如果温度误差较小但持续存在,则增强积分作用”。控制器根据实时温控数据,通过模糊推理自动调整 PID 参数。

  • 神经网络 PID 控制:利用神经网络学习系统动态特性,建立输入(温度误差、环境参数)和输出(PID 参数调整)的映射关系。通过离线训练和在线更新,神经网络能够自适应地捕捉系统的非线性和时变特性。

    Frankcklin Rivas-echeverria. Nerual Network-based Auto-Tuning for PID Controllers
    在这里插入图片描述
    在温控系统中,可以使用神经网络对过去的温度响应数据进行训练,建立一个预测模型。当实际温度响应与预测不符时,神经网络根据误差反向调整输出的 PID 参数,达到优化控制的目的。

    直接训练一个神经网络作为 PID 控制器, F. Shahraki, M.a. Fanaei. Adaptive System Control with PID Neural networks在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一杯水果茶!

谢谢你的水果茶啦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值