控制系统稳定性
稳定性的基本概念
稳定性指的是 闭环系统维持平衡状态或在被施加扰动或变化后返回该状态的能力。
-
内部(Lyapunov)稳定性:考察系统状态 x ˙ = A x \dot x = Ax x˙=Ax 在 没有外部输入下的固有动态,
- 渐近稳定(Asymptotic Stability):所有解 x ( t ) x(t) x(t) 随 t → ∞ t\to\infty t→∞ 都趋于零。
- 李雅普诺夫稳定(Lyapunov Stability):初始扰动足够小,状态始终保持在小范围内(但不一定趋于零)。
- 不稳定:存在初始条件使得 ∥ x ( t ) ∥ → ∞ \|x(t)\|\to\infty ∥x(t)∥→∞。
-
BIBO 稳定性(Bounded-Input Bounded-Output Stability)
有界输入和有界输出(BIBO)稳定性,通常称为输入输出稳定性,评估系统对有界(有限)输入的响应。如果一个系统 y ( t ) = G ( s ) u ( t ) \;y(t)=G(s)u(t) y(t)=G(s)u(t) 对于任何有界输入信号,其输出都保持有界,即不会无限增长,则该系统被认为是 BIBO 稳定的。
注意:内部稳定 ⇔ BIBO 稳定(当系统是可控可观且最小实现时) ,否则两者可能不同。
- 若系统包含不可控或不可观测极点,这些极点在输入—输出传递函数中会被零点抵消,看不到(它们属于内部模态,不影响 BIBO)。
- 最小实现(Minimal Realization)通过
minreal
或可控/可观子空间剔除这些“被抵消”的模态,使得传递函数中的极点集真正反映系统动态。
一个稳定的控制系统是指 输出保持有界,并且 即使受到外部力量或输入变化的干扰,也不会表现出不受控制的或振荡的行为。
相位裕度 和 增益裕度 等数学表达式用于量化 负反馈系统的稳定性。
系统稳定性分类
判定 | 条件(连续时域) | 根据 |
---|---|---|
渐近稳定 | ℜ ( s i ) < 0 \Re(s_i)<0 ℜ(si)<0 | 极点位置 |
边界稳定 | ℜ ( s i ) ≤ 0 \Re(s_i)\le0 ℜ(si)≤0,无重根 | 极点位置 |
不稳定 | 存在 ℜ ( s i ) > 0 \Re(s_i)>0 ℜ(si)>0 或重根 | 极点位置 |
零点 | 任意位置 | 不影响稳定性 |
非最小相位 | 零点在右半平 ℜ ( z j ) > 0 \Re(z_j)>0 ℜ(zj)>0 | 零点位置影响瞬态 |
- 极点 决定指数衰减/增长与振荡,是真正的稳定性指标;
- 零点 决定输入—输出路径上的局部“抑制”或相位/幅度畸变,但不改变是否收敛。
举个简单的例子,假设我们有一个传递函数
G
(
s
)
G(s)
G(s),
G
(
s
)
=
1
s
+
a
G(s)=\frac{1}{s+a}
G(s)=s+a1
所以
−
a
-a
−a 就是我们的极点,为了理解这在时间域中意味着什么,取系统的逆拉普拉斯变换
L
−
1
\mathcal L^{-1}
L−1,得到系统:
f
(
t
)
=
e
−
a
t
u
(
t
)
f(t) = e^{-at}u(t)
f(t)=e−atu(t)
假设初始条件为 0,可以将
u
u
u 设为 1,我们的系统就变成了
f
(
t
)
=
e
−
a
t
f(t) = e^{-at}
f(t)=e−at
稳定系统
如果 系统的传递函数的极点位于 s 平面的左侧,则认为 系统是稳定的。但随着极点靠近原点,系统的稳定性会降低。
脉冲响应显示,
- 位于实轴上的极点具有过阻尼响应。
- 对于第二和第三象限的极点,瞬态响应是正弦波但指数衰减(欠阻尼响应)。
接近原点的极被称为主导极(Dominant Poles)。因此,如果一个稳定系统的极位于 p 1 p_1 p1 和 p 2 p_2 p2(如上图),则 p 1 p_1 p1 被认为是该系统的主导极。 p 2 p_2 p2 被认为是该系统的非主导极(Non-dominant Poles)。在瞬态响应中,由于 p 2 p_2 p2 的贡献衰减得更快,响应将由主导极 p 1 p_1 p1 主导。
边界稳定系统
一个系统如果其 极点位于虚轴上且不重复,则称为边界稳定。
时域脉冲响应显示在恒定幅度下的振荡。初始条件(输入幅度)定义了幅度。
不稳定系统
如果一个系统 在 s 平面的右侧有任何极点,则称为 不稳定。即使只有一个极点在右侧,也可能使系统不稳定。
输出随时间增长,振荡幅度随时间指数增长。在 实际系统中,振幅会上升到电源电压。
可控性与可观性
理解并检验可控性与可观测性,是状态空间设计的第一步,也是保证反馈与估计器有效性的核心前提。
- 状态反馈:只有在可控系统上,才能通过反馈 u = − K x u=-Kx u=−Kx 任意配置闭环极点。
- 状态估计:只有在可观测系统上,才能用观测器(如卡尔曼滤波、Luenberger 观测器)准确重建状态。
- 最小实现:不可控或不可观测的模态在输入—输出上无贡献,可用
minreal
删除,得到最小等价系统。
考虑 LTI 系统的状态空间描述:
{ x ˙ ( t ) = A x ( t ) + B u ( t ) , y ( t ) = C x ( t ) + D u ( t ) , \begin{cases} \dot x(t) = A\,x(t) + B\,u(t),\\[5pt] y(t) = C\,x(t) + D\,u(t),\\ \end{cases} ⎩ ⎨ ⎧x˙(t)=Ax(t)+Bu(t),y(t)=Cx(t)+Du(t),
其中 x ∈ R n x\in\mathbb R^n x∈Rn、 u ∈ R m u\in\mathbb R^m u∈Rm、 y ∈ R p y\in\mathbb R^p y∈Rp。
可控性(Controllability)
可控性(Controllability) 系统从 任意初始状态 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 在 有限时间 T T T 内,通过恰当选择输入 u ( t ) u(t) u(t),能否将状态驱动到 任意目标状态 x ( T ) = x f x(T)=x_f x(T)=xf。。
判断条件:Kalman 可控性矩阵法则
C
=
[
B
A
B
A
2
B
…
A
n
−
1
B
]
∈
R
n
×
n
m
\mathcal{C} = [\,B\;\;A B\;\;A^2B\;\dots\;A^{n-1}B\,]\in\mathbb R^{n\times nm}
C=[BABA2B…An−1B]∈Rn×nm
判据:若 r a n k ( C ) = n \mathrm{rank}(\mathcal C)=n rank(C)=n,则系统完全可控;否则存在不可控子空间。
定义可控 Gramian 判据:
W c ( T ) = ∫ 0 T e A τ B B ⊤ e A ⊤ τ d τ . W_c(T) = \int_{0}^{T} e^{A\tau} B B^\top e^{A^\top \tau}\,\mathrm d\tau. Wc(T)=∫0TeAτBB⊤eA⊤τdτ.
- 若对某 T > 0 T>0 T>0, W c ( T ) W_c(T) Wc(T) 是可逆的(正定矩阵),系统可控。
- 物理/几何意义:
- 每个列向量 A k B A^k B AkB 表示“从输入作用一次、两次……到第 k + 1 k+1 k+1 次,对状态的影响方向”。
- C \mathcal C C 的列空间若能张满整个状态空间,就说明输入足够“驱动”到任何方向。
可观测性(Observability)
可观性(Observability) 能否通过观测输出 y ( t ) y(t) y(t) 在有限时间内唯一重构系统初始状态 x ( 0 ) = x 0 x(0)=x_0 x(0)=x0。
判断条件:Kalman 可观测性矩阵法则
O
=
[
C
C
A
C
A
2
⋮
C
A
n
−
1
]
∈
R
p
n
×
n
\mathcal{O} = \begin{bmatrix} C\\ C\,A\\ C\,A^2\\ \vdots\\ C\,A^{n-1}\\ \end{bmatrix} \in\mathbb R^{pn\times n}
O=
CCACA2⋮CAn−1
∈Rpn×n
判据:若 r a n k ( O ) = n \mathrm{rank}(\mathcal O)=n rank(O)=n,则系统完全可观测;否则存在不可观测子空间。
定义可观测 Gramian 判据:
W
o
(
T
)
=
∫
0
T
e
A
⊤
τ
C
⊤
C
e
A
τ
d
τ
.
W_o(T) = \int_{0}^{T} e^{A^\top \tau} C^\top C e^{A\,\tau}\,\mathrm d\tau.
Wo(T)=∫0TeA⊤τC⊤CeAτdτ.
- 若对某 T > 0 T>0 T>0, W o ( T ) W_o(T) Wo(T) 是可逆的,系统可观测。
- 物理/几何意义:
- O \mathcal O O 的行向量 C A k C A^k CAk 表示“状态向第 k k k 次演化后,对输出的映射”。
- 若行空间张满状态空间,说明每个状态分量都能在某个时刻对输出产生可区分影响。
简单示例:二阶质量-弹簧系统
状态空间(无阻尼):
A = [ 0 1 − k / m 0 ] , B = [ 0 1 / m ] , C = [ 1 0 ] A=\begin{bmatrix}0&1\\-k/m&0\end{bmatrix},\quad\\[10pt] B=\begin{bmatrix}0\\1/m\end{bmatrix},\quad\\[10pt] C=\begin{bmatrix}1&0\end{bmatrix} A=[0−k/m10],B=[01/m],C=[10]
- 可控性: C = [ B , A B ] = [ [ 0 ; 1 / m ] , [ − k / m ; 0 ] ] \mathcal C=[B,\;AB] = \bigl[\,[0;1/m],\;[-k/m;0]\,\bigr] C=[B,AB]=[[0;1/m],[−k/m;0]] rank ( C ) = 2 \operatorname{rank}(\mathcal C)=2 rank(C)=2,完全可控。
- 可观测性: O = [ C C A ] = [ [ 1 , 0 ] ; [ 0 , 1 ] ] \mathcal O=\begin{bmatrix}C\\CA\end{bmatrix} = \bigl[\,[1,0];\;[0,1]\bigr] O=[CCA]=[[1,0];[0,1]] rank ( O ) = 2 \operatorname{rank}(\mathcal O)=2 rank(O)=2,完全可观测。
在数学上, ( A , B ) (A,B) (A,B) 的可控性等价于 ( A ⊤ , C ⊤ ) (A^\top, C^\top) (A⊤,C⊤) 的可观测性。这意味着可控性的分析工具几乎可以“对转”直接用于可观测性。
深入理解可控性和可观性
参考:A Conceptual Approach to Controllability and Observability
首先要了解你想要控制的系统,然后
- 可以使用 执行器(Actuators) 来控制系统,执行器会传递控制力和能量。
- 可以使用 传感器(Sensors) 测量系统的特定状态,例如电压、位置和温度,这些传感器会产生系统的输出。
- 控制器(Controller) 设计归结为 如何利用传感器数据以及参考信号或某种命令来生成正确的执行器命令。
如果你的系统没有合适的执行器来影响系统的正确部分,或者你没有安装合适的传感器来控制,那么你的控制器设计注定会失败。如果没有这两个参数,你就无法充分地影响系统。系统将无法控制,无法被观察。
因此,可控性和可观测性是系统如何与执行器和传感器协同工作的条件,它与特定的控制技术(如 PID 或极点配置)无关。
- 可控性意味着存在控制信号,允许系统在有限的时间内 达到任何状态,这也称为可达性。所以可控性并不意味着必须维持该状态,而是指 可以达到该状态。
- 可观测性意味着所有状态(关心的状态)都可以从系统的输出中得知。也就是说,我们可以通过使用适当的传感器选择和传感器位置来了解系统中每个状态的值。
现在,让我们抛开约束的现实问题,看看汽车的高维状态空间。我们关心的状态是 XY 位置、XY 速度、偏航角和偏航率。
假设,
- 传感器有车速表来测量速度,我们的眼睛用来评估其他所有东西。
- 执行器是方向盘、油门和刹车踏板。
通过这套设置,我们 能够以给定的速度和偏航角控制汽车到特定位置。
先来看一下 可观测性的概念,并从一个极端的例子开始,以帮助说明其重要性。
我们闭上眼睛,移除所有传感器信息,这会导致 C C C 矩阵归零。
基本上,我们无法知道任何状态。你不知道自己在哪里,行驶速度是多少,或者你面对的方向。在这个例子中,我们假设你感觉不到加速,也听不到引擎的声音,或者其他任何东西。
现在你仍然可以控制汽车,这并没有受到影响,因为你可以转动方向盘并踩下踏板。但是,由于 缺乏可观测性,你不能安全地驾驶它到达目的地。然而,根据我们之前的定义,汽车是可控的。
相反的情况,我们移除方向盘和踏板,这会导致 B B B 矩阵归零。
想象一下,如果你撞到一大片冰面,汽车打滑,会发生什么情况。 并且不受转向或制动的影响,即使您无法影响汽车的状态,该 系统仍然是可观察的,因为您可以查看速度表,并且可以通过观察外部来跟踪您的位置。
可以看到拥有一个可观察和控制的系统是多么必要,它们协同工作,即使是 部分无法控制或无法观察 的系统仍然很麻烦,想象一下尝试在方向盘拆下的情况下驾驶汽车,即使仍然可以通过踏板改变其速度,但无法改变偏航状态。
如果任何一个临界状态无法控制,那么整个系统都被视为无法控制,如果任何一个临界状态无法观察,那么整个系统都被视为无法观察。