Keras学习笔记03——常用重要模块

一、目标函数objectives编译模型必选两个参数之一可以通过传递预定义目标函数名字指定目标函数,也可以传递一个Theano/TensroFlow的符号函数作为目标函数,该函数对每个数据点应该只返回一个标量值,并以下列两个参数为参数: y_true:真实的数据标签,Theano/TensorFl...

2016-09-28 10:53:06

阅读数 12670

评论数 0

Keras学习笔记02——常用的网络层

在搭建神经网络结构时,我们要向网络中添加一些网络层,下面列举出来常用的网络层及其相关用法。 一、常用层 常用层对应于core模块,core内部定义了一系列常用的网络层,包括全连接、激活层等。 1.Dense层 Dense层:全连接层。 keras.layers.core.De...

2016-09-27 10:29:39

阅读数 9311

评论数 0

Keras学习笔记01——快速搭建神经网络结构

在Keras1.0版中新增加了functional model API(泛型模型),接收一个或一些张量作为输入,然后输出的也是一个或一些张量,同时仍然支持Sequential模型。 Sequential模型:一种特殊的模型,单输入单输出,一条路通到底,层与层之间只有相邻关系,没有跨层连接。这种模...

2016-09-27 10:17:23

阅读数 3510

评论数 0

Deep Learning 学习系列004 —— 结构设计

神经网络的结构:神经网络有多少个神经单元和这些神经单元之间怎么连接。在链状结构中,上述问题变为选择神经网络的深度和每层的宽度。统一逼近理论:具有一个线性输出单元,至少一个隐藏层和一个挤压激活函数的前向神经网络可以逼近任意Borel可测函数。统一逼近理论表明,一个MLP(多层感知器)可以逼近表示任意...

2016-09-07 10:39:43

阅读数 233

评论数 0

Deep Learning 学习系列003 —— 隐藏单元

如何选择隐藏单元的类型?隐藏单元接受一个输入xx,先进行仿射变换z=WTx+bz=W^Tx+b,然后对zz的每个元素应用激活函数g(z)g(z)。大多数隐藏单元之间的不同主要在于激活函数的选择。1. ReLU及其泛化ReLU激活函数:g(z)=max{0,z}g(z)=max\{0,z\}缺点:对...

2016-09-07 09:28:56

阅读数 405

评论数 0

Deep Learning 学习系列002 —— 基于梯度的学习

由于神经网络的非线性导致其代价函数大多数情况下都是非凸的,所以使用基于梯度的迭代算法不能保证代价函数达到最小值。凸优化从任何初始值都会保证收敛(理论上,实践中可能会遇到数值问题)。在非凸代价函数上使用随机梯度下降不能保证收敛,同时对初始值比较敏感。应用基于梯度的学习,我们必须选择: 1. 代价函...

2016-09-06 20:13:11

阅读数 704

评论数 0

Deep Learning 学习系列001 —— 神经网络基本概念

前向神经网络的目标估计某个函数f几个基本概念 - 模型的深度 - 输出层 - 隐藏层 - 模型的宽度现代神经网络的研究基于数学和工程上的准则,不再一味地模仿人的大脑。所以我们可以将前向神经网络看成函数逼近器,用来实现统计泛化。线性模型将模型能力限制在线性函数中,为了将其进行扩展,可...

2016-09-06 20:01:58

阅读数 352

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭