深度学习
小诸葛080
这个作者很懒,什么都没留下…
展开
-
Deep Learning 学习系列001 —— 神经网络基本概念
前向神经网络的目标估计某个函数f几个基本概念 - 模型的深度 - 输出层 - 隐藏层 - 模型的宽度现代神经网络的研究基于数学和工程上的准则,不再一味地模仿人的大脑。所以我们可以将前向神经网络看成函数逼近器,用来实现统计泛化。线性模型将模型能力限制在线性函数中,为了将其进行扩展,可以使用Φ(x)将x进行非线性变换,然后对Φ(x)使用线性模型。 关于Φ(x)的选择: 1. 使用通用翻译 2016-09-06 20:01:58 · 538 阅读 · 0 评论 -
Deep Learning 学习系列002 —— 基于梯度的学习
由于神经网络的非线性导致其代价函数大多数情况下都是非凸的,所以使用基于梯度的迭代算法不能保证代价函数达到最小值。凸优化从任何初始值都会保证收敛(理论上,实践中可能会遇到数值问题)。在非凸代价函数上使用随机梯度下降不能保证收敛,同时对初始值比较敏感。应用基于梯度的学习,我们必须选择: 1. 代价函数 2. 怎么表示模型的输出1 代价函数大多数情况下,参数模型定义了一个分布pmodel(y|x;θ)翻译 2016-09-06 20:13:11 · 1105 阅读 · 0 评论 -
Deep Learning 学习系列003 —— 隐藏单元
如何选择隐藏单元的类型?隐藏单元接受一个输入xx,先进行仿射变换z=WTx+bz=W^Tx+b,然后对zz的每个元素应用激活函数g(z)g(z)。大多数隐藏单元之间的不同主要在于激活函数的选择。1. ReLU及其泛化ReLU激活函数:g(z)=max{0,z}g(z)=max\{0,z\}缺点:对于激活函数为0的样例不能通过基于梯度的方法学习。所以对ReLU进行泛化:hi=g(z,α)i=max{0翻译 2016-09-07 09:28:56 · 1046 阅读 · 0 评论 -
Deep Learning 学习系列004 —— 结构设计
神经网络的结构:神经网络有多少个神经单元和这些神经单元之间怎么连接。在链状结构中,上述问题变为选择神经网络的深度和每层的宽度。统一逼近理论:具有一个线性输出单元,至少一个隐藏层和一个挤压激活函数的前向神经网络可以逼近任意Borel可测函数。统一逼近理论表明,一个MLP(多层感知器)可以逼近表示任意函数。但是我们不能保证学习算法可以学到这个函数,学习失败的原因有二: 1. 最优化算法不能得到理想函数翻译 2016-09-07 10:39:43 · 400 阅读 · 0 评论 -
Keras学习笔记01——快速搭建神经网络结构
在Keras1.0版中新增加了functional model API(泛型模型),接收一个或一些张量作为输入,然后输出的也是一个或一些张量,同时仍然支持Sequential模型。 Sequential模型:一种特殊的模型,单输入单输出,一条路通到底,层与层之间只有相邻关系,没有跨层连接。这种模型编译速度快,操作上也比较简单。搭建神经网络流程1.模型结构model = Sequential()原创 2016-09-27 10:17:23 · 4697 阅读 · 0 评论