Deep Learning 学习系列003 —— 隐藏单元

如何选择隐藏单元的类型?

隐藏单元接受一个输入 x ,先进行仿射变换z=WTx+b,然后对 z 的每个元素应用激活函数g(z)。大多数隐藏单元之间的不同主要在于激活函数的选择。

1. ReLU及其泛化

ReLU激活函数:

g(z)=max{0,z}

缺点:对于激活函数为0的样例不能通过基于梯度的方法学习。

所以对ReLU进行泛化:

hi=g(z,α)i=max{0,zi}+αimin{0,zi}

1.1 绝对值修正

αi=1 ,则

g(z)=|z|

1.2 leaky ReLU

αi 为一个比较小的值,如0.1。

1.3 参数ReLU

αi 看做一个需要学习的参数。

maxout单元

z 划分成若干组,每组有k个值。
maxout输出单元输出每组中的最大值:

g(z)i=maxjG(i)zj

maxout函数可以学习激活函数本身,当k比较大时,可以以任意精度逼近任意凸函数。

2. logistic sigmoid

g(z)=11+exp(x)

3. 双曲正切

g(z)=tanh(z)=exp(x)exp(x)exp(x)+exp(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值