Deep Learning 学习系列001 —— 神经网络基本概念

前向神经网络的目标

估计某个函数f

几个基本概念
- 模型的深度
- 输出层
- 隐藏层
- 模型的宽度

现代神经网络的研究基于数学和工程上的准则,不再一味地模仿人的大脑。所以我们可以将前向神经网络看成函数逼近器,用来实现统计泛化。

线性模型将模型能力限制在线性函数中,为了将其进行扩展,可以使用Φ(x)将x进行非线性变换,然后对Φ(x)使用线性模型。
关于Φ(x)的选择:
1. 使用通用函数,如RBF核函数
2. 手动选择Φ
3. 使用深度学习的方法来学习Φ

其中第三种方法具有前两种的优点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值