问题:编程求解根号2,不能使用内置函数sqrt ?
方法一、牛顿迭代法(切线逼近法)
最先反应出的是,这是一个数学问题,自然想到切线逼近
根据步骤5,得到的公式,我们来编程计算:
double Sqr(double k) {
double x = k; // 当前迭代的x
double y = 0.0; // 上一次的迭代结果
// 两次迭代的差值非常小时,便接近结果了
while (fabs(x - y) > 0.00001) {
// 保存上一次迭代的结果
y = x;
// 求解新的x
x = (x * x + k) / (2 * x);
}
return x;
}
参考:
牛顿法:
https://zh.wikipedia.org/wiki/牛顿法
导数表:
https://baike.baidu.com/item/导数表/10889755?fr=aladdin
方法二、二分查找
- 从 0~ k 之间取中间值m,m*m 与 k 做比较
- 若 mm > k ; 则下次取 0 ~ mm 中间值比较
- 若mm < k ; 则下次取 mm ~ k 中间值比较
- 逐渐逼近…
#include<iostream>
#include<cmath>
using namespace std;
double MySqrt(double n)
{
//此处一定为浮点数,不要用整数
double _max = n;
double _min = 0.0;
//此处为精度,当满足该精度时,返回该近似值
double p = 1e-5;
double mid = (_max + _min) / 2.0;
//此处是浮点数之差的绝对值与精度进行比较
while(fabs(mid * mid - n) > p)
{
if(mid * mid < n)
_min = mid;
else if(mid * mid > n)
_max = mid;
else
return mid;
mid = (_max + _min) / 2.0;
}
return mid;
}
int main()
{
cout<<MySqrt(2)<<endl;
}