序列的定义
序列:在深度学习中一般为带有时间先后顺序(拥有逻辑结构)的一段具有连续关系的数据(文本,语音等等),或者是生活中有位置,顺序的固定序列信息。
为什么需要RNN(循环神经网络)或者CNN(卷积神经网络)处理序列数据
因为普通的神经网络模型处理定长的数据或者数据输入规模固定,不可变,所以具有一定局限性。
输入输出不定长,所以普通的神经网络处理不定长的数据效果较差。
前面的网络提取到的信息不能够被充分利用。
因此我们如果需要处理不定长的数据的话一般会运用RNN模型进行处理。下面简单介绍RNN网络。
RNN(循环神经网络)
简介:RNN用于处理时序信息,而且为循环神经网络,简单来说就是前面信息的输入会影响。
简单用公式描述为。w和b为权重参数和超参数。而且一般输出层用全连接神经网络连接。
在普通的全连接神经网络或者CNN中,每层神经元只能像上传递(单向传递),从而被称为前向传播神经网络,在RNN中,神经元的输出可以作用到自身,简单来说就是第i层神经元在m时刻的输入取决于i-1层神经元在m时刻的输出和i层神经元在m-1时刻的输出,如图所示。

RNN优点
1.能够处理时序信息,对于前面的信息可以综合使用,能够保留更多的信息。
2.可以不定长输入,方便我们处理文本,语音等信息。
RNN缺点
1.不能够长时间记忆
2.会出现梯度消失等问题。
3.有可能使得神经网络陷入局部最优解。
CNN(卷积神经网络)
CNN神经网络是卷积神经网络,一般用于处理图像识别,语音处理等等领域。CNN能够较好减少神经网络的参数,而且减少过拟合的详细,不会丢失太多的数据信息。举一个例子说明CNN神经网络的例子。
下面为一张图像,而且输入为(透明度+GRB)即为四维(0,0,0,0)数据大小为1000*1000*1000*1000。此外,就是卷积核大小为100*100,一共有100个卷积核进行处理数据,所以每一个卷积核提取不一样的特征,所以一共提取了100个特征层,而且每个卷积核卷积出来为该图像100*100的像素区域的数据加权求和。
最后经过了ReLU激活函数,池化等处理之后,最后连接全连接层,进行图像识别或者分类等下有核心任务。而且经过卷积处理之后我们获得的数据减少了10*6个数量级,因为原来运用全连接层需要训练10*12个参数,经过了100*100(卷积核的大小)*100(卷积核的数量)卷积处理之后,缩小了一半。减少了过拟合现象。

参考
https://zhuanlan.zhihu.com/p/38816145