深度学习 时间序列回归学习笔记

本文介绍了深度学习中常用的时间序列回归模型,包括RNN、LSTM、GRU、TCN、Seq2Seq和Transformer,以及统计模型ARIMA和ETS。在效果评估和计算效率上进行了比较,强调TCN在计算效率上的优势,而不同模型的精度取决于应用场景。
摘要由CSDN通过智能技术生成

目录

常用的深度学习时间序列回归模型:

ARIMA模型

ETS模型

效果评估

计算效率比较:

TCN(Temporal Convolutional Network)

Seq2Seq(Sequence-to-Sequence)

GRU(Gated Recurrent Unit)

总结


常用的深度学习时间序列回归模型:

在深度学习领域,有多种模型可以用于时间序列回归问题。这些模型能够捕获时间序列数据中的复杂模式和长期依赖关系。以下是一些常用的深度学习模型:

  1. RNN(循环神经网络):
    RNN特别适用于序列数据,因为它们可以处理任意长度的序列,并且可以捕获时间序列中的时间依赖性。

  2. LSTM(长短期记忆网络):
    LSTM是RNN的一种特殊类型,它通过特殊的门控机制来解决RNN中的长期依赖问题。LSTM在处理长序列时更为有效。

  3. GRU(门控循环单元):
    GRU是LSTM的一个变体,它简化了门控机制,通常计算效率更高,同时保持了LSTM的优点。

  4. CNN(卷积神经网络࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值