目录
TCN(Temporal Convolutional Network)
常用的深度学习时间序列回归模型:
在深度学习领域,有多种模型可以用于时间序列回归问题。这些模型能够捕获时间序列数据中的复杂模式和长期依赖关系。以下是一些常用的深度学习模型:
-
RNN(循环神经网络):
RNN特别适用于序列数据,因为它们可以处理任意长度的序列,并且可以捕获时间序列中的时间依赖性。 -
LSTM(长短期记忆网络):
LSTM是RNN的一种特殊类型,它通过特殊的门控机制来解决RNN中的长期依赖问题。LSTM在处理长序列时更为有效。 -
GRU(门控循环单元):
GRU是LSTM的一个变体,它简化了门控机制,通常计算效率更高,同时保持了LSTM的优点。 -
CNN(卷积神经网络