搭“高塔”

今天我们学校举行了搭胡萝卜塔活动。我和我的小伙伴们也参加了。我们之前在家练习了很多次,应该可以很好的完成。
  首先,我们准备好材料:一把小刀,一根胡萝卜,约300根牙签,一块菜板等。
  然后,我们用小刀把胡萝卜切成一条一条,再切成大小均匀的胡萝卜粒,这里必须注意安全,小刀很锋利,最好能在大人的陪同下进行。
  接着,我们数了200根牙签,先在草稿纸上画了设计图,就开始搭了。我从“地震安全三角”中得到了启示,三角形是最稳定的。但是操作起来有点难,最后经过团队其他成员一起商量,还是选择了搭一个正方体,然后连接起来。我用1根牙签的尖端插进胡萝卜粒的一面,在重复几十次,这样就有了好多可以搭的“零件”。然后大家一起参与,小心翼翼的,把“零件”连接起来,这样就连成一个很高的长方体。我们搭了16层,由于时间关系,只能先结顶了,顶上有一个长长的胡萝卜条,这样既能增加高度,同时又像一面旗帜!
  这次的搭胡萝卜塔活动,让我们几个同学能相互合作,相互讨论,大大的增进了我们的友谊!来源:(https://www.zuowenketi.com/)

### 关于蓝桥杯高塔问题的解题思路 #### 1. **题目背景** 在蓝桥杯竞赛中,“高塔问题”通常涉及一种场景:X星球上的高楼用于测试物品的耐摔程度。假设每栋楼有N层,目标是从最低成本的角度找出某个物品(如手机)能够承受的最大楼层高度。 根据已知引用内容[^2],该问题的核心在于通过最少次数的尝试找到临界楼层K,使得物品从第K层掉落会损坏,而从低于K层的地方掉落后不会损坏。 --- #### 2. **动态规划方法** 解决此类问题的经典方式是采用**动态编程 (Dynamic Programming)** 方法。以下是具体分析: - 假设我们拥有M部相同的设备(例如手机),以及一栋具有N层的大厦。 - 定义`dp[m][n]`表示当前拥有的设备数量为m,大厦总层数为n的情况下,所需的最小尝试次数。 状态转移方程如下: ```plaintext dp[m][n] = min( max(dp[m-1][k-1], dp[m][n-k]) ) + 1, k ∈ [1,n] ``` 其中: - `max(dp[m-1][k-1], dp[m][n-k])`: 表示如果我们在第k层扔下设备,则有两种可能的结果——碎或者不碎。 - 如果碎了 (`dp[m-1][k-1]`),我们需要继续在前(k-1)层寻找答案; - 如果没碎 (`dp[m][n-k]`),则可以在剩余(n-k)层范围内进一步探索。 - 外加一次实际操作 (+1),即本次投掷本身。 边界条件设定为当仅剩一层时无需额外试验(`dp[*][1]=1`);同样地,在没有任何可用装置情形下也无计可施(`dp[0][*]=∞`)。 基于上述理论框架构建解决方案并编码实现之。 --- #### 3. **代码实例** 下面给出一段利用Python编写的程序来演示这一过程: ```python def egg_drop(m, n): # 初始化DP表 dp = [[0]*(n+1) for _ in range(m+1)] # 当只有一个鸡蛋的时候,最坏情况就是线性扫描所有的楼层 for i in range(1, n+1): dp[1][i] = i # 对每一个蛋的数量进行迭代计算 for eggs in range(2, m+1): for floors in range(1, n+1): dp[eggs][floors] = float('inf') for attempt in range(1, floors+1): res = 1 + max(dp[eggs-1][attempt-1], dp[eggs][floors-attempt]) if res < dp[eggs][floors]: dp[eggs][floors] = res return dp[m][n] print(egg_drop(2, 10)) # 输出结果应为4次最佳策略下的最大必要尝试数 ``` 此函数接收两个参数分别代表鸡蛋数目与建筑物总层数,并返回完成整个任务所需要的最少实验次数。 --- #### 4. **优化思考方向** 尽管标准动规方案已经相当高效,但对于更大规模输入仍可能存在性能瓶颈。因此可以考虑引入二分查找技术或其他高级技巧进一步提升效率。此外值得注意的是,某些特殊条件下可以直接得出结论而不必完全依赖通用算法求解。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值