≪统计学习精要(The Elements of Statistical Learning)≫课堂笔记(二)

继续一周一次的课堂笔记  :D  昨天去晚了站着听讲,感觉好好啊,注意各种集中。想想整个教室里面就是我和老师是站着的,自豪感油然而生。

第二次课讲的东西依旧比较简单,是这本书第二章的前半部分。作为一个好久之前已经预习过的孩子,我表示万分的得意(最小二乘法难道不是三四年前就学过的?话说以后我再面人的时候,就让他推导最小二乘估计量,嘻嘻...考验一下基本功)。

------------原谅我的废话,笔记开始------------

简单预测方法:最小二乘法(以下沿用计量经济学的习惯,简称OLS)

OLS实在是太普遍了,我就不赘述细节了。OLS的思想就是,基于已有的样本信息,找出一条直线,让预测值与真实值之间的残差平方和最小,即 n(yy^)2 最小。其中, y 为真实的样本观测值(已有样本),而 y^ 是OLS的预测值。用图来讲的话,X为一维向量的时候,就是用一条直线来最好的拟合各个样本点。

这里就很明显了,首先OLS假设是一条直线。那么就是一个参数模型,即我们需要假设一个未知的参数 β ,构成一个线性方程 y=βx ,然后再去估计 β 的值。然后呢,直线会有很多条,所以我们要找到一个目标——比如这里,就是最小化残差平方和RSS。换言之,我们寻找的就是最优的向量 β^ 使得RSS最小。

解这个最优化问题很简单,我就不重复了。最后解得的最优估计量为:

β^=(XX)1XY

这里写成矩阵形式,比较简单。X为一维向量的时候,可以改写成 形式,我个人不大喜欢,就不展开了。

简单预测方法:K近邻(k nearest neighbor)

K近邻的思想就更简单了。不就是想预测某个点x对应的y么?那么就把它的邻居都找来,平均一下好了。不是有句话叫做什么“一个人的收入就大概是他的圈子收入的平均值么?”

所以  y^=mean(yi|xiNk(x)) ,这里 Nk(x) 表示点x的K近邻。至于这个近邻怎么定义嘛,嘻嘻,很简单啊,欧几里德距离就可以嘛~

评语:吴老师对于这两个算法的直观评价是,OLS呢就是勤奋的学生,预测前先做足功课,预测的时候只要知道X,噼里啪啦一下子y就估计出来了。然而knn则是一个临时抱佛脚的学生,预测的时候开始找自己的k近邻,然后把它们平均一下就好了。哈哈,大意如此,大家可以体会一下这种精神。我个人感觉呢,OLS属于以不变应万变的,而knn则是见机行事的。

统计决策理论(Statistical Decision Theory)

说了这么多,这个模型好不好到底怎么判读呢?凡事总得有个标准呢。这一系列的标准或者说准则,就是统计决策理论了。

首先呢,大致我们需要对X,Y有个分布上的描述:用 P(X,Y) 记作向量 (X,Y) 的联合分布,然后 p(X,Y) 为其对应的密度函数。之后为了估计Y,我们会有很多很多模型,即各种 f(X) ,而这些 f(X) 组成的函数空间记为 F

然后我们定义一个损失函数,比如在均方误差意义下, L(Y,f(X)=(Yf(X))2 ,这样就有了一个选择的标准——使得损失函数的期望最小: EPE(f)=E(Yf(X))2=[yf(x)]2P(dx,dy) 。接下来就是,到底在 F 空间里面,哪一个 f 最符合这个标准呢?

首先自然是把联合分布变为条件分布。这个idea显而易见——我们总是知道X的(原谅我吧,全中文确实比较难写,偶尔穿插英文一下 ^_^)。所以conditional on X,我们就有了

EPE(f)=[yf(x)]2P(dx,dy)=x{y[yf(x)]2p(y|x)dy}p(x)dx

去解最小化问题,最终我们得到的就是在每个点X上,  f(X)=E(y|X=x) 。通俗的讲就是,对于每个点预测,把和它X向量取值一样的样本点都找出来,然后取他们的平均值就可以了。很直观的不是么?这里也有点最大似然的想法呢——比如预测一个男孩的身高,最保险的就是把和它同龄的其他男孩的身高平均一下,不是么?

但是说来简单啊,很多时候 P(X,Y) 都是未知的,根本无法计算嘛。所以只能近似:

  • 回忆一下knn,就是放松了两点:1)  xk 取的是x的近邻,而不一定是x; 2)用样本平均数代替了期望
  • 而OLS呢,也是最后在 E(β)=E[(XX)1XY] 这里,用样本平均代替了期望。

近似嘛,自然有好的近似和不好的近似。很显然的,当样本比较大、尤其是比较密集的时候,x的邻居应该都离x很近,所以这个误差可以减小;此外,当样本很大的时候,根据大数定律,平均数收敛于期望。所以,这两种算法应该说,都在大样本下会有更好的效果。

模型选择、训练误差与测试误差、过拟合

这里讲的比较简单。模型选择就是 F 的选择,即选择哪一类函数空间 F ,然后再其中找/估计最优的 f(X) 。很显然,如果只有若干个有限的样本,我们总能把各个样本用直线或者曲线依次连起来,这样的话就有无数个f可以作为此问题的解。显然这不是我们想要的——这样的称为“不设定问题”,即可能无解、可能多个解、还可能因为一点点X的变化导致整个解的解答变化。因此我们需要先设定一个解的类别。

训练误差:预测模型估计值与训练数据集之间的误差。RSS就是一个典型的训练误差组成的残差平方和。

测试误差:用训练集以外的测试数据集带来的误差,显然我们更关心的是测试误差——训练总能训练的很好,让损失函数期望最小,然而测试集则不一定这样。一般说来,测试误差>训练误差。

过拟合:选择一个很复杂的f,使得训练误差很小,而实际的测试误差不一定小。最极端的就是刚才说的,把训练集的点一个个依次连起来...训练误差肯定是0是不是?

我们关心的自然是怎么降低测试误差。显然这东西会跟训练误差有关,但是它还跟f的复杂度有关。最最棘手的就是,f的复杂度是一个难以衡量的问题。早期的研究有用自由度来衡量这个复杂度的,但是也不是那么的靠谱...后面的有人鼓捣出来PAC(使得近似正确的概率最大——吴老师原话),还有一个VC来衡量复杂度——但几乎实践中无法计算,没几个计算出来的。嗯,水很深哇。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微个日光日

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值