通用树的回顾:双亲孩子表示法
— 每个结点都有一个指向其双亲的指针
— 每个结点都有若干个指向其孩子的指针
另一种树结构模型:孩子兄弟表示法
— 每个结点都有一个指向其第一个孩子的指针
— 每个结点都有一个指向其第一个右兄弟的指针
孩子兄弟表示法的特点:
1、能够表示任意的树形结构
2、每个结点包含一个数据成员和两个指针成员
3、孩子结点指针和兄弟结点指针构成了 “树杈”
二叉树的定义:二叉树是由 n ( n >= 0 ) 个结点组成的有限集合,该集合或者为空,或者是由一个根结点加上两颗 分别称为 左子树和右子树的、互不相交的二叉树组成。
二叉树有以下 5 种形态:
两种特殊的二叉树:满二叉树(Full Binary Tree)和完全二叉树(Complete Binary Tree)
1、满二叉树:如果二叉树中所有分支结点的度数都为 2,且叶子结点都在同一层次上,则称这类二叉树为满二叉树
2、完全二叉树:如果一颗具有 n 个结点的高度为 K 的二叉树,它的每一个结点都与高度 K 的满二叉树中编号为 1 – n 的结点一一对应。则称这颗二叉树为完全二叉树(从上到下从左到右编号)。
完全二叉树的相关特性:
— 同样结点数的二叉树,完全二叉树的高度最小
— 完全二叉树的叶结点仅出现在最下面两层:
1、最底层的叶结点一定出现在左边,
2、倒数第二层的叶结点一定出现在右边,
3、完全二叉树中度为 1 的结点只有左孩子
- 小结
1、通用树结构采用了双亲结点表示法
2、孩子兄弟表示法有能力描述任意类型的树结构
3、孩子兄弟表示法能够将通用树转化成二叉树
4、二叉树是最多只有两个孩子的树