备考2024年思维100春季线上比赛?来做做官方模拟题(附答案)

文章讲述了2024年春季思维100活动的线上比赛即将开始,包括报名截止日期、官方样题(涵盖3-6年级)及其数学难题,如数码模块问题、景观灯光设计和汉诺塔移动问题。还提及了欧几里得算法的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2024年春季思维100活动第一阶段线上比赛(4月20日,星期六,上午)的报名正在进行中更多安排和需要提前了解的关键点可以见我前面写的文章,或者直接联系我获取相关资料。

【提醒】2024年春季的思维100在线比赛的报名时间截止为4月6日(本周六,明天),请设置好闹钟提醒以免错过,最好今天就报名。

官方发布的2024年春季思维100活动三四五六4个年级的82道样题我已经全部做成了在线版本,可以反复刷题,吃透了这些样题,参加比赛更有胜算。

下面截图来自我制作的在线版本,答案来自官方提供,统一见文末。

1、2024年思维100春季比赛样题-3年级第5题:

在使用活字印刷术处理阿拉伯数字时,需要准备足够多的数码模块。例如要印刷 1 到10 的每个整数时,一共需要 11 个数码模块。理由如下:1 是一位数,需要 1 个数码模块;2 是一位数,需要 1 个数码模块;……;9 是一位数,需要 1 个数码模块;10是两位数,需要 2 个数码模块。如要印刷 1 到 100 中的所有整数,一共需要________ 个数码模块。

2、2024年思维100春季比赛样题-4年级第8题:

滴水湖是位于临港的一个环形湖泊。现在要设计湖周边的景观灯光。已知在湖边均匀分布 n 盏灯,编号 1~n,每盏灯可以采用 3 种不同样式之一的灯。要求相邻的两盏灯的样式不能相同。如果 n=2,一共有 6 种不同的方案。如果 n=3,也有 6 种不同的方案。如果 n=4,一共有________种不同的方案。

3、2024年思维100春季比赛样题-5年级第4题:

在经典的“汉诺塔”游戏里,有三根杆子 A、B、C。有 4 个穿孔圆盘,盘的尺寸各不相同,目前所处位置如图,最小的圆盘在 A 处顶部,第二小的圆盘在 C 处,第三小的圆盘在 B 处,最大的圆盘在 A 处底部。要求将所有圆盘移至 C 杆,规则如下:(1)每次只能移动一个圆盘;(2)大盘不能叠在小盘上面。最少要移动________ 次,才能将所有圆盘移至 C 杆。

4、2024年思维100春季比赛样题-6年级第6题:

众所周知,在人类还没有发明计算机之前就已经有了算法的研究。欧几里得算法就是很古老的一种算法,也叫辗转相除法,用于解决最大公约数问题。

对于两个正整数 a和 b,需要求解 a 和 b 的最大公约数时,可以转换为求解 b 和(a 除以 b 的余数)的最大公约数,随着数值变小,答案就呼之欲出了。

例如:求解 49 和 35 的最大公约数,可转换为求解 35 和 14(49 除以 35 的余数为 14)的最大公约数,再转换为求解 14 和 7的最大公约数,答案显然是 7。

那么,21777 和 1309 的最大公约数是________。


参考答案:见本文第一条回复。下面是一些复习备考资料,欢迎了解


本文题目答案:

1、192;2、18;3、10;4、119。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新的成长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值