重学贝叶斯定理

前阵子面试时被一道贝叶斯定理的题问倒了,虽说是很久没接触遗忘了,但也反映了个人在概率学习上不够扎实,也没有做到学而时习,实在惭愧。在这里重新温习一下贝叶斯定理。
说到 贝叶斯定理,就不得不重点提一下 条件概率全概率

一、条件概率

定义:假定事件 A A A 发生的概率为 P ( A ) P(A) P(A),事件 B B B 发生的概率为 P ( B ) P(B) P(B)在事件 B B B 发生的前提下,事件 A A A 发生的概率 P ( A ∣ B ) P(A|B) P(AB) 就是条件概率。
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
用文氏图理解一下:
在这里插入图片描述
事件 B B B 发生后,事件 A A A 发生的概率,就是上图 A A A B B B 交集部分 P ( A B ) P(AB) P(AB) P ( B ) P(B) P(B) 部分的占比,即: P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
同理,事件 A A A 发生后,事件 B B B 发生的概率就是: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
所以条件概率公式又可以推导为:
P ( A ∣ B ) = P ( A B ) P ( B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) (1) P(A|B) = \frac{P(AB)}{P(B)} =\frac{P(B|A)*P(A)}{P(B)} \tag{1} P(AB)=P(B)P(AB)=P(B)P(BA)P(A)(1)

注:
当事件 A 与事件 B 相互独立时: P ( A B ) = P ( A ) ∗ P ( B ) P(AB)=P(A)*P(B) P(AB)=P(A)P(B)

二、全概率

定义:设事件 B 1 , B 2 , … , B n B_1, B_2, …, B_n B1,B2,,Bn 是一个完备事件组,即它们互不相容,和为全集。则对于任意的事件 A A A 都有:
P ( A ) = P ( A B 1 ) + P ( A B 2 ) + … + P ( A B n ) = ∑ i = 1 n P ( A B i ) P(A) = P(AB_1) + P(AB_2) + … + P(AB_n) = \sum_{i=1}^{n}P(AB_i) P(A)=P(AB1)+P(AB2)++P(ABn)=i=1nP(ABi)
由条件概率的定义可知: P ( A B ) = P ( A ∣ B ) ∗ P ( B ) P(AB) = P(A|B)*P(B) P(AB)=P(AB)P(B),所以:
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) (2) P(A) = \sum_{i=1}^{n}P(B_i)P(A|B_i) \tag{2} P(A)=i=1nP(Bi)P(ABi)(2)

全概率就是表示造成某个结果,有多种原因,问造成这种结果的概率是多少。

用文氏图理解一下:
在这里插入图片描述
A 1 、 A 2 、 A 3 A_1、A_2、A_3 A1A2A3 组成了一个完备事件组,要求事件 B B B 发生的概率,就是求事件 B B B 与事件 A 1 A_1 A1同时发生的概率 、事件 B B B 与事件 A 2 A_2 A2 同时发生的概率 、事件 B B B 与事件 A 3 A_3 A3同时发生的概率 的之和。

三、贝叶斯定理

贝叶斯定理是执果索因的过程,就是当已知结果(后验概率),问导致这个结果的第 i 原因(先验概率)的可能性是多少。
在条件概率公式和全概率公式的基础上可以推出贝叶斯定理:
P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( A ∣ B i ) P ( B i ) ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) (3) P(B_i|A) =\frac{P(AB_i)}{P(A)}= \frac{P(A|B_i)P(B_i))}{\sum_{i=1}^{n}P(A|B_i)P(B_i)} \tag{3} P(BiA)=P(A)P(ABi)=i=1nP(ABi)P(Bi)P(ABi)P(Bi))(3)


现有这么一个场景:某员工通勤有 3 条路线可以选择,路线1最近,选择路线1的概率为 50%,选择路线2的概率为30%,选择路线3的概率为20%。
假设已知选择路线1但是未迟到的概率是20%,选择路线2但是未迟到的概率是40%,选择路线3但是未迟到的概率是70%。
请问,该员工在某天未迟到,他选择路线1的可能性有多大?

解:
令事件未迟到为 A A A,选择路线 i i i B i B_i Bi
已知:

  • P ( B 1 ) = 0.5 P(B_1) = 0.5 P(B1)=0.5 ; P ( A ∣ B 1 ) = 0.2 P(A|B_1)=0.2 P(AB1)=0.2 ;
  • P ( B 2 ) = 0.3 P(B_2) = 0.3 P(B2)=0.3 ; P ( A ∣ B 2 ) = 0.4 P(A|B_2)=0.4 P(AB2)=0.4 ;
  • P ( B 1 ) = 0.2 P(B_1) = 0.2 P(B1)=0.2 ; P ( A ∣ B 3 ) = 0.7 P(A|B_3)=0.7 P(AB3)=0.7 ;
  • P ( B 1 ∣ A ) P(B_1|A) P(B1A)

那么引用式(3):
P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( A ∣ B i ) P ( B i ) ) ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(B_i|A) =\frac{P(AB_i)}{P(A)}= \frac{P(A|B_i)P(B_i))}{\sum_{i=1}^{n}P(A|B_i)P(B_i)} P(BiA)=P(A)P(ABi)=i=1nP(ABi)P(Bi)P(ABi)P(Bi))
P ( B 1 ∣ A ) = P ( A ∣ B 1 ) P ( B 1 ) P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + P ( B 3 ) P ( A ∣ B 3 ) ≈ 0.28 P(B_1|A) =\frac{P(A|B_1)P(B_1)}{P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(B_3)P(A|B_3)}\approx0.28 P(B1A)=P(B1)P(AB1)+P(B2)P(AB2)+P(B3)P(AB3)P(AB1)P(B1)0.28

参考:https://blog.csdn.net/u010164190/article/details/81043856

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值