PICK定理及其证明(转)

给定顶点座标均是整点(或正方形 格点 )的简单多边形 皮克定理 说明了其面积 A 和内部格点数目i 、边上格点数目b 的关系:A = i + b /2 - 1。

 

证明

因为所有简单多边形都可切割为一个三角形 和另一个简单多边形。考虑一个简单多边形P ,及跟P 有一条共同边的三角形T 。若P 符合皮克公式,则只要证明P 加上TPT 亦符合皮克公式(I),与及三角形符合皮克公式(II),就可根据数学归纳法 ,对于所有简单多边形皮克公式都是成立的。

多边形

PT 的共同边上有c 个格点。

  • P 的面积: iP + bP /2 - 1
  • T 的面积: iT + bT /2 - 1
  • PT 的面积:
( iT + iP + c - 2) + ( bT - c + 2 + bP - c + 2 ) /2 - 1
= iPT + bPT /2 - 1

三角形

证明分三部分:证明以下的图形符合皮克定理:

  1. 所有平行于轴线的矩形;
  2. 以上述矩形的两条邻边和对角线组成的直角三角形;
  3. 所有三角形(因为它们都可内接于矩形内,将矩形分割成原三角形和至多3个第二点提到的直角三角形)。

矩形

设矩形R 长边短边各有m ,n 个格点:

  • AR = (m -1)(n -1)
  • iR = (m -2)(n -2)
  • bR = 2(m+n)-4
iR + bR /2 - 1
= ( m -2)( n -2) + (m+n) - 2 - 1
= mn - ( m + n ) +1
= ( m -1)( n -1)

直角三角形

易见两条邻边和对角线 组成的两个直角三角形全等,且i ,b 相等。设其斜边上有c 个格点。

  • b = m +n +c -3
  • i = ((m -2)(n -2) - c + 2)/2
i + b /2 - 1
= (( m -2)( n -2) - c + 2)/2 + ( m + n + c -3)/2 - 1
= ( m -2)( n -2)/2 + ( m + n - 3)/2
= ( m -1)( n -1)/2

一般三角形

推广

  • 取格点的组成图形的面积为一单位。在平行四边形 格点,皮克定理依然成立。套用于任意三角形格点,皮克定理则是A = 2i + b - 2。
  • 对于非简单的多边形P ,皮克定理A = i + b /2 - χ(P),其中χ(P )表示P 的欧拉特征数 。
  • 高维推广:Ehrhart多项式 ;一维:植树问题。
  • 皮克定理和欧拉公式(V-E+F=2)等价。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值