Pick定理 有趣的证明

Pick定理:如果一个简单多边形(以下称为“多边形”)的每个顶点都是直角坐标平面上的格点,则称该多边形为格点多边形.若一个面积为S的格点多边形,其边界上有a个格点,内部有b个格点,则Sa/2+b-1.

强迫孩子们接受无法说出道理的东西,很容易打击孩子们的求知欲望和学习兴趣.我经过反复琢磨,找到一个非常浅显的办法,既能够形象的解释Pick定理的道理,又能让看清Pick定理的本质.整个解释只需用到一个很浅显的预备知识:“多边形外角和等于一个周角”.

以下图的格点多边形ABCDE为例,其边界上有a个格点,内部有b个格点.

设想在平面的每个格点放一个铁饼,满足:

(1)每个铁饼都一样大的圆(或者说是圆柱),圆心是格点;

(2)每个铁饼都恰好重1克;

(3)每个铁饼的半径都做得尽量小——不仅铁饼之间互相不重叠,而且还使得多边形ABCDE内部的每个格点上所放的铁饼,都完全落在该多边形的内部;多边形ABCDE外部的每个格点上所放的铁饼,都完全落在该多边形的外部.

格点多边形面积公式(Pick定理)的一个形象解释

首先,考虑多边形ABCDE的边界以内的铁的总重.

这可以分如下两类进行计算: 第一类:其内部格点上放的铁饼.此类总重显然是b克.第二类:其边界格点上放的铁饼落在边界以内的铁.假设每个边界格点上放的铁饼,恰有一半落在边界以内,则总重为a/2克.但显然在每个顶点处放的铁饼,落在边界以内的铁实际不足一半,比一半还少该顶点的一个外角内所含的铁,所有这种外角内所含的铁恰好拼成一块完整的铁饼(因为多边形外角和等于一个周角).所以后一类铁的总重是a/2-1克.

因而,多边形ABCDE的边界以内的铁的总重是a/2+b-1克.

接下来,设想将平面上所有铁饼全部熔化,打造成一张厚薄均匀的铁板盖在整个平面上.这可以看作是:将每个单位正方形的四个顶点处的每个90°的扇形铁饼,熔化在这个正方形内部,故熔化后每个单位正方形内的铁都是1克.进而,平面上任意图形,其面积是多少,其内部就含多少克铁.

因而,熔化并重新打造后,多边形ABCDE的边界以内的铁的总重是S克.

最后,注意到这个熔化并重新打造的过程,可以看成是:每个格点处的铁饼中的铁,按(以该格点为中心)放射状的方式重新适当改动位置而已.这样的改动,不会使格点多边形ABCDE外面的铁跑到多边形内部,也不会使内部的铁跑到外部.

即熔化并重新打造的前后,多边形ABCDE的边界以内的铁的总重是不变的,所以Sa/2+b-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值