推荐系统
文章平均质量分 91
xiewenbo
互联网广告行业呆过几年,旅游公司呆过几年,对机器学习,自然语言处理,图像识别,个性化推荐 有兴趣
展开
-
搜推广系统里的bias & debias
参考Paper《Bias and Debias in Recommender System: A Survey and Future Directions》1、selection bias选择性偏差指的是在研究过程中因样本选择的非随机性而导致得到的结论存在偏差。用户倾向于给自己喜欢或者不喜欢的物品进行打分。通常的解决办法有propensity score,同时学习打分预测任务和缺失数据预测任务。例如Improving Ad Click Prediction by Considering Non-转载 2022-01-21 00:09:47 · 607 阅读 · 0 评论 -
《变分自动编码器在协同过滤中的使用》做推荐召回 《Variational Autoencoders for Collaborative Filtering 》
文章主要讲VAE中的隐式反馈在CF中的使用,取top K做为召回。非线性的概率模型可以大大提升模型的表征能力。传统encode-decode框架把Input encode到一个“固定”的编码,然后再利用decode将编码复原到目标,对于未知的输入可能无法decode到有意义的输出,而VAE在encode过程得到一个隐式的分布得到均值和方差两个参数,通过两个参数确定的分布进行采样得到隐变量z,然...原创 2019-12-26 23:50:41 · 1252 阅读 · 0 评论 -
《Neural Input Search for Large Scale Recommendation Models》笔记
一、综述:起因:推荐场景下,embedding维度太大,参数太多,导致高存储占用,feature embedding的每一维不能有效的训练。本文内容:NIS主要应用推荐场景下(Recall/Rank),输入特征的embedding产生大量的训练参数,而且对于不同的特征以及一个特征的不同值,因为他们的覆盖的样本数据不同,因此这些参数得到train的机会也有不同,对于覆盖高频的特征或特征值用较...原创 2019-12-26 23:42:58 · 1033 阅读 · 0 评论 -
论推荐系统的Exploitation和Exploration
上一篇文章讲到,一个推荐系统,如果片面优化用户的喜好,很可能导致千篇一律的推荐结果。文中曾经用了一节来讨论为什么使用Exploitation & Exploration (E & E)结果可能依然不能“免俗”。其实,E & E是推荐系统里很有意思,但也非常有争议的一个算法。一方面,大家都基本明白这类算法的目的,每年有很多相关论文发表。另一方面,这是工业界对于部署这类算法非常...转载 2019-12-04 10:06:29 · 665 阅读 · 0 评论 -
特征哈希(Feature Hashing)
转处:http://breezedeus.github.io/2014/11/20/breezedeus-feature-hashing.html#fn:fhash在特征处理(Feature Processing)中我介绍了利用笛卡尔乘积的方法来构造组合特征。这种方法虽然简单,但麻烦的是会使得特征数量爆炸式增长。比如一个可以取N个不同值的类别特征,与一个可以去M个不同值的类别特征做笛卡尔乘转载 2018-02-01 15:33:07 · 1228 阅读 · 0 评论 -
The Wide and Deep Learning Model(译文+Tensorlfow源码解析)
转处:http://blog.csdn.net/sxf1061926959/article/details/78440220?readlogAuthor: DivinerShi本文主要讲解Google的Wide and Deep Learning 模型。本文先从原始论文开始,先一步步分析论文,把论文看懂。再去分析官方开源的Tensorflow源码,解析各个特征的具体实现方法,以及模转载 2018-02-01 15:29:14 · 754 阅读 · 0 评论 -
TensorFlow Wide And Deep 模型详解与应用(二)
转处:http://geek.csdn.net/news/detail/235471作者简介:汪剑,现在在出门问问负责推荐与个性化。曾在微软雅虎工作,从事过搜索和推荐相关工作。 责编:何永灿(heyc@csdn.net) 本文首发于CSDN,未经允许不得转载。TensorFlow Wide And Deep 模型详解与应用(一)前面讲了模型输入的特征,下面谈谈模型本转载 2018-02-01 15:27:17 · 1495 阅读 · 0 评论 -
TensorFlow Wide And Deep 模型详解与应用(一)
转处:http://geek.csdn.net/news/detail/235465作者简介:汪剑,现在在出门问问负责推荐与个性化。曾在微软雅虎工作,从事过搜索和推荐相关工作。 责编:何永灿(heyc@csdn.net) 本文首发于CSDN,未经允许不得转载。Wide and deep 模型是 TensorFlow 在 2016 年 6 月左右发布的一类用于分类和回归的模型转载 2018-02-01 15:24:00 · 1719 阅读 · 0 评论 -
Bandit算法与推荐系统
https://mp.weixin.qq.com/s?__biz=MjM5NDQ3NTkwMA==&mid=2650142030&idx=1&sn=e638ab26cc6c36f41363dbbafb310e01&chksm=be866f5d89f1e64b77427d25f945c3660fee5a0bf5b02d7aa4f61afde1910aeb41b61da738b1&scene=0&ke转载 2017-06-06 19:18:34 · 3606 阅读 · 0 评论 -
推荐系统中基于深度学习的混合协同过滤模型
近些年,深度学习在语音识别、图像处理、自然语言处理等领域都取得了很大的突破与成就。相对来说,深度学习在推荐系统领域的研究与应用还处于早期阶段。携程在深度学习与推荐系统结合的领域也进行了相关的研究与应用,并在国际人工智能顶级会议AAAI 2017上发表了相应的研究成果《A Hybrid Collaborative Filtering Model with Deep Structure for转载 2017-01-24 20:13:45 · 8683 阅读 · 2 评论 -
个性化推荐综述
注:由于人个技术水平有限,文中的技术及原理也都只是点到为止,文中的难免会有很多疏漏甚至错误,请大家指正(本文会陆续更新),同时有一些理论是参考各个牛人的研究成果,这里只是做以引用。个性化推荐的本质是帮助用户找到自己感兴趣的物品,这里包括电商网站的商品,在线视频网站的电影作品,以及音乐网站上的音乐作品,这些使用场景,都非常的适合应用个性化推荐技术,帮助用户找到那边感兴趣又不容易找到物品。...原创 2016-12-21 15:13:39 · 5203 阅读 · 2 评论 -
流动的推荐系统
我们经常谈论的推荐系统(Recommender System),从形式上看是比较“静态”的推荐,通常位于网页主要信息的周边,比如电商网站的“看了又看”、“买了又买”。这种推荐系统在大多数场景下无法独立撑起一款产品。依据维基百科Recommender System词条的定义:“推荐系统是信息过滤系统的子类,专门用于预测用户对一个项目偏好或者评分进行预测”,则兴趣Feed也是一种推荐系统:它预转载 2016-11-24 19:43:39 · 2140 阅读 · 0 评论 -
What is the difference between SVD and matrix factorization in context of recommendation engine?
I have seen two broad uses of matrix factorization in recommenders. Both involve low-rank approximate factorizations. The first is really a generic approach which can be combined with many factoriza转载 2016-10-21 10:44:35 · 468 阅读 · 0 评论 -
美团推荐算法实践
http://tech.meituan.com/mt-recommend-practice.html前言推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情。随着互联网的深入发展,越来越多的信息在互联网上传播,产生了严重的信息过载。如果不采用一定的手段,用户很难从如此多的信息流中找到对自转载 2016-10-18 20:27:55 · 842 阅读 · 0 评论