tensorflow api相关
xiewenbo
互联网广告行业呆过几年,旅游公司呆过几年,对机器学习,自然语言处理,图像识别,个性化推荐 有兴趣
展开
-
tf导出pb文件,以及如何使用pb文件
先罗列出来代码,有时间再解释 from tensorflow.python.framework import graph_util import tensorflow as tf def export_model(input_checkpoint, output_graph): #这个可以加载saver的模型 saver = tf.train.import_meta_gr...转载 2020-02-16 16:28:48 · 806 阅读 · 0 评论 -
get weights from pb model in tensorflow
18 Let us first load the graph from.pbfile. import tensorflow as tf from tensorflow.python.platform import gfile GRAPH_PB_PATH = './model/tensorflow_inception_v3_stripped_optimized_quantized....转载 2020-02-15 23:06:05 · 919 阅读 · 0 评论 -
tensorflow predictor by keras h5
1. keras model conver from h5 to pb from keras.models import load_model import tensorflow as tf import os from keras import backend as K #路径参数 weight_file_path = 'model.h5' output_graph_name = '...原创 2020-02-10 22:32:42 · 757 阅读 · 0 评论 -
几种不同的dot/Dot的用法
1. from keras.layers.merge importdot x = tf.constant([[1,2,3]]) >>> dot([x,x],axes=1) <tf.Tensor 'dot_8/ExpandDims:0' shape=(1, 1) dtype=int32> 2. import tensorflow.keras.ba...原创 2019-12-04 12:55:27 · 2042 阅读 · 0 评论 -
Understanding `tf.nn.nce_loss()` in tensorflow
https://stackoverflow.com/questions/41475180/understanding-tf-nn-nce-loss-in-tensorflow https://github.com/yl-1993/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_deep_nce.py I am t...转载 2019-06-05 15:53:21 · 310 阅读 · 0 评论 -
Tensorflow 利用高阶API Estimater.predict 实现实时预测,避免reload计算图
https://blog.csdn.net/qq547276542/article/details/85080139 code: https://github.com/marcsto/rl/blob/master/src/fast_predict_test.py https://github.com/marcsto/rl/blob/master/src/fast_predict2.py ...转载 2019-05-07 19:28:25 · 1521 阅读 · 0 评论 -
Create a DataSet from generator and return a Dict
So actually it is possible to do what you intend, you just have to be specific about the contents of the dict: import tensorflow as tf import numpy as np N = 100 # dictionary of arrays: metadata = ...转载 2019-05-09 16:22:29 · 667 阅读 · 0 评论 -
使用TensorFlow Dataset读取数据
在使用TensorFlow构建模型并进行训练时,如何读取数据并将数据恰当地送进模型,是一个首先需要考虑的问题。以往通常所用的方法无外乎以下几种: 1.建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用。使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed;也可以建立一个Python的generator,一个batch一...转载 2019-05-06 20:06:06 · 662 阅读 · 0 评论 -
TFRecord + Dataset 进行数据的写入和读取
https://www.jianshu.com/p/72596a8488c3 Record顾名思义主要是为了记录数据的。 使用TFRocord存储数据的好处: 为了更加方便的建图,原来使用placeholder的话,还要每次feed_dict一下,使用TFRecord+ Dataset 的时候直接就把数据读入操作当成一个图中的节点,就不用每次都feed了。 可以方便的和Estima...转载 2019-05-06 20:05:27 · 1471 阅读 · 1 评论 -
Tensorflow multi-models and multi-version
1. Multi-models 预备备:docker使用的是17.05.0-ce及以上的版本,之前用的13.XX的版本没有--mount这样的命令 0)下载安装tensorflow #官网上抄的,啊哈哈 docker pull tensorflow/serving git clonehttps://github.com/tensorflow/serving 1)创建一个多模型配置文件...转载 2019-04-29 20:01:24 · 177 阅读 · 0 评论 -
tf.where()函数
tf.where()定义如下: where(condition, x=None, y=None,name=None) condition:一个Tensor,数据类型为tf.bool类型 如果x、y均为空,那么返回condition中值为True的位置的Tensor:例如:x就是condition,y是返回值 x中值为True的位置有[0,0,0],[0,1,1],[0,2,0],[0,...转载 2019-04-26 13:52:17 · 394 阅读 · 0 评论 -
直观的理解tensorflow中的tf.tile()函数
tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。最终的输出张量维度不变。 函数定义: tf.tile( input, multiples, name=None ) input是待扩展的张量,multiples是扩展方法。 假如input是一个3维的张量。那么mutiples就必须是一个1x3...转载 2019-04-26 11:36:19 · 412 阅读 · 0 评论 -
tf.sequence_mask
用法: sequence_mask( lengths, maxlen=None, dtype=tf.bool, name=None ) 函数参数 lengths:整数张量,其所有值小于等于maxlen。 maxlen:标量整数张量,返回张量的最后维度的大小;默认值是lengths中的最大值。 dtype:结果张量的输出类型。 name:操作的名字。 用例子说明用法:...转载 2019-04-26 11:35:16 · 448 阅读 · 0 评论 -
tf.clip_by_global_norm理解
refer to :https://blog.csdn.net/u013713117/article/details/56281715Gradient Clipping的引入是为了处理gradient explosion或者gradients vanishing的问题。当在一次迭代中权重的更新过于迅猛的话,很容易导致loss divergence。Gradient Clipping的直观作用就是让...转载 2018-06-08 17:38:54 · 446 阅读 · 0 评论 -
卷积步长strides参数的具体解释
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME')这是一个常见的卷积操作,其中strides=【1,1,1,1】表示滑动步长为1,padding=‘SAME’表示填0操作当我们要设置步长为2时,strides=【1,2,2,1】,很多同学可能不理解了,这四个参数分别代表了什么,查了官方函...转载 2018-06-20 20:18:51 · 2530 阅读 · 2 评论 -
tf.transpose函数的用法
tf.transpose函数中文意思是转置,对于低维度的转置问题,很简单,不想讨论,直接转置就好(大家看下面文档,一看就懂)。[html] view plain copytf.transpose(a, perm=None, name='transpose') Transposes a. Permutes the dimensions according to perm. Th...转载 2018-05-30 11:53:36 · 393 阅读 · 0 评论 -
tf.contrib.learn.preprocessing.VocabularyProcessor
tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length, min_frequency=0, vocabulary=None, tokenizer_fn=None)1参数:max_document_length: 文档的最大长度。如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充。 min_frequen...转载 2018-05-30 10:58:28 · 396 阅读 · 0 评论 -
tf.nn.softmax_cross_entropy_with_logits
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?首先明确一点,loss是代价值,也就是我们要最小化的值tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)除去name参数用以指定该操作的name,与方法有关的一共两个参数:第...转载 2018-05-30 10:57:50 · 450 阅读 · 1 评论