IR&NLP&DL
xiewenbo
互联网广告行业呆过几年,旅游公司呆过几年,对机器学习,自然语言处理,图像识别,个性化推荐 有兴趣
展开
-
搜索-Query Understanding (QU)
往简单来讲,用户输入了搜索词,系统通过搜索词找到与搜索词相关的商品集合,系统通过用户及商品的情况进行排序,最终展现给用户。0.找不到但是在构建搜索系统的初期总是无法精准地帮助用户找到想要的商品主要原因有以下几点:不同的用户对同一种诉求的表达往往是有差别的,往往会存在一种比较常见的现象,用户输入的query并不能清晰准确的表达需求。这一块是可以通过较好的产品设计及实时反馈来做精确需求...转载 2020-01-08 10:26:49 · 1787 阅读 · 0 评论 -
搜索-Query理解(全)
Query 模块:纠错 分词 紧密度 同义词 词权重 实体词识别 意图识别长尾 query 的多样性对于搜索系统来说是一个很大的挑战,原因有:❶存在输入错误。例如上图中的错误 query "塞尔维雅" ( 塞尔维亚 ),对于这种错误我们希望系统能够自动的纠错;❷存在表达冗余。例如输入 "孙子兵法智慧的现代意义",在这个语境下,"智慧" 是一个无关紧要的词。如果强制去匹...转载 2020-01-06 17:39:08 · 7162 阅读 · 3 评论 -
检索问答模型
前言检索回答系统一般过程:1)构建好候选回答索引集,2)收到quary后,初步选出一些候选回答,3)quary和回答做matching,然后reranking,4)最后返回topk个回答.排序reranking根据不同任务类型有不同方法.matching操作有如下模型使用:1. DSSM( Deep Structured Semantic Models ) 深度结构语义模型 ...转载 2018-11-26 17:42:11 · 268 阅读 · 0 评论 -
亚像素
最近接触到一些和subpixel相关的操作,对亚像素相关基本概念还不是很了解,所以这里想了解一下。 在相机成像的过程中,获得的图像数据是将图像进行了离散化的处理,由于感光元件本身的能力限制,到成像面上每个像素只代表附近的颜色。例如两个感官原件上的像素之间有4.5um的间距,宏观上它们是连在一起的,微观上它们之间还有无数微小的东西存在,这些存在于两个实际物理像素之间的像素,就被称为“亚...转载 2019-01-16 15:34:22 · 244 阅读 · 0 评论 -
深度学习中Embedding层有什么用?
from:https://blog.csdn.net/u010412858/article/details/77848878这篇博客翻译自国外的深度学习系列文章的第四篇,想查看其他文章请点击下面的链接,人工翻译也是劳动,如果你觉得有用请打赏,转载请打赏:Setting up AWS & Image Recognition Convolutional Neural Network...转载 2019-03-05 17:53:51 · 709 阅读 · 0 评论 -
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
出处:https://zhuanlan.zhihu.com/p/49271699Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得。那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大。但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键。...转载 2019-03-14 23:02:07 · 182 阅读 · 0 评论