opencv3 ann 人工神经网络使用方法

//创建ANN
Ptr<ANN_MLP> bp = ANN_MLP::create();
// (a) 3层,输入层神经元个数为 4,隐层的为 6,输出层的为 4
Mat layers_size = (Mat_<int>(1,3) << 4,6,4);

// (b) 4层,输入层神经元个数为 4,第一个隐层的为 6,第二个隐层的为 5,输出层的为 4
Mat layers_size = (Mat_<int>(1,4) << 4,6,5,4);


//设置层数
 Mat layerSizes = (Mat_<int>(1, 4) << image_rows*image_cols, int(image_rows*image_cols / 2), int(image_rows*image_cols / 2), class_num);
 bp->setLayerSizes(layerSizes);

设置层数的时候第一项为特征的维数,输出层神经元的个数为种类的个数。

下面设置各种参数:

bp->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1);
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2 );
//终止训练的条件
bp->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 300, FLT_EPSILON));
bp->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
Ptr<TrainData> tData = TrainData::create(DataMat, ROW_SAMPLE, labelsMat);
bp->train(tData);
float response = ann->predict(testMat);
//保存模型
bp->save("bp_param");

参考资料:https://www.cnblogs.com/xinxue/archive/2017/06/27/5789421.html

                


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值