一. Numpy
1. Numpy创建 2*2*3的数据
code:
import numpy as np
l1 = np.arange(12)
l1 = np.reshape(l1, (2,2,3))
print l1
output:
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
2.多维数据每一位加1
code:
import numpy as np
l1 = np.arange(12)
l1 = np.reshape(l1, (2,2,3))
print l1 + 1
output
[[[ 1 2 3]
[ 4 5 6]]
[[ 7 8 9]
[10 11 12]]]
3.数据在最后一维加 [1,2,3]
code:
import numpy as np
l1 = np.arange(12)
l1 = np.reshape(l1, (2,2,3))
print l1 + [1,2,3]
output:
[[[ 1 3 5]
[ 4 6 8]]
[[ 7 9 11]
[10 12 14]]]
二. Tensorflow
注意:例如tf.add()接口同+号一样具有boradcast
1.创建 2*2*3的数据
import tensorflow as tf
import numpy as np
l1 = np.arange(12)
l1 = np.reshape(l1, (2,2,3))
c1 = tf.constant(l1)
with tf.Session() as sess:
r1 = sess.run(c1)
print r1
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
2.数据每一位加1
import tensorflow as tf
import numpy as np
l1 = np.arange(12)
l1 = np.reshape(l1, (2,2,3))
c1 = tf.constant(l1)
c1 = c1 + 1
with tf.Session() as sess:
r1 = sess.run(c1)
print r1
[[[ 1 2 3]
[ 4 5 6]]
[[ 7 8 9]
[10 11 12]]]
3.数据在最后一维加 [1,2,3]
import tensorflow as tf
import numpy as np
l1 = np.arange(12)
l1 = np.reshape(l1, (2,2,3))
c1 = tf.constant(l1)
c1 = c1 + [1,2,3]
with tf.Session() as sess:
r1 = sess.run(c1)
print r1
[[[ 1 3 5]
[ 4 6 8]]
[[ 7 9 11]
[10 12 14]]]