伯努利试验

伯努利试验:

在相同的条件下、相互独立的进行一种实验,这种实验特点是只有两种情况:发生与不发生。

如果事件A发生的概率为p,那么在n次伯努利试验下,事件A发生k次的概率为 

二项分布:

一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率 q=1-p,
N次独立重复试验中发生K次的概率是
P(ξ=K)=
   
(K=0,1,2,3,…n)
那么就说ξ服从二项分布。其中P称为成功概率。
记作:ξ~B(n,p)
期望:Eξ=np
方差:Dξ=npq

几何分布:

在第 n次伯努利试验中,试验 k次才得到第一次成功的机率。详细的说是:前 k-1次皆失败,第 k次成功的概率。
如果事件发生的概率是P,则不发生的概率q=1-p,则
P(ξ=K) =
 
具有这种分布列的随机变量,称为服从参数p的几何分布。
几何分布的期望EX=
   
,方差DX=
   
.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值