伯努利试验:
在相同的条件下、相互独立的进行一种实验,这种实验特点是只有两种情况:发生与不发生。
如果事件A发生的概率为p,那么在n次伯努利试验下,事件A发生k次的概率为
二项分布:
一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率 q=1-p,
N次独立重复试验中发生K次的概率是
P(ξ=K)=
(K=0,1,2,3,…n)

那么就说ξ服从二项分布。其中P称为成功概率。
记作:ξ~B(n,p)
期望:Eξ=np
方差:Dξ=npq
几何分布:
在第
n次伯努利试验中,试验
k次才得到第一次成功的机率。详细的说是:前
k-1次皆失败,第
k次成功的概率。
如果事件发生的概率是P,则不发生的概率q=1-p,则
P(ξ=K) =

具有这种分布列的随机变量,称为服从参数p的几何分布。
几何分布的期望EX=
,方差DX=
.

