思想:通过对目标边界轮廓进行离散傅立叶变换来定量地描述图像中目标边界的形状。
当确定了图像中目标边界的起始点和移动方向(顺时针或逆时针)后,就可以用边界点的坐标对序列来描述边界。假设边界上有N个边界点,起始点为,按照逆方向就可以将边界表示为一个坐标序列:
s(k) = [x(k),y(k)] k=0,1,2,..,N-1 其中,x(k)= y(k)=
一般,如果把目标边界看成是从某一点开始,沿边界反时针方向旋转一周的周边长是一个复函数,也即x-y平面与复平面u-v重合,x轴与实部u轴重合,y轴与虚部v轴重合。边界点可以用复数表示:
s(k) = x(k) + jy(k) k=0,1,2,..,N-1
虽然通过这种重新定义,边界本身没有发生变化,但边界的表示从二维表达简化为一维表达了。
对复数s(k),可将其用一维离散傅立叶变换系数a(u)表示为
u=0,1,2,..,N-1
其中,复系数a(u)就称为边界的傅立叶描述子
通过对傅立叶描述子进行傅立叶反变换,可以对边界重建得到边界的各点s(k),用前L个傅立叶变换系数近似:
L=0,1,2,..,N-1
低阶系数反映了边界的大体形状,随着系数阶数的不断增高,边界的细节特征逐渐变得明显,这与傅立叶变换中
低频分量能较好的反映目标的整体形状和高频分量能较好的反映目标的细节特征是相一致的。
傅立叶描述子在描述边界时,具有对旋转、平移、尺度变化不敏感的特点。