图像分割(区域生长)

种子点是人指定的。


阈值分割:很少考虑空间关系,即不同的区域可能需要的阈值不一样,使多阈值选择受到限制。










裂纹图像分割区域生长是一种常用的图像处理方法,用于自动检测和分割裂纹区域。下面是一个使用MATLAB实现裂纹图像分割区域生长的示例代码: ```matlab % 读取图像 image = imread('裂纹图像.jpg'); % 设置种子点 seed_row = 100; seed_col = 100; % 设置生长阈值 threshold = 50; % 初始化分割结果 segmented_image = zeros(size(image)); % 创建队列并将种子点入队 queue = [seed_row, seed_col]; % 定义生长方向(上、下、左、右) directions = [-1, 0; 1, 0; 0, -1; 0, 1]; % 区域生长 while ~isempty(queue) % 出队 current_pixel = queue(1,:); queue(1,:) = []; % 获取当前像素的位置 current_row = current_pixel(1); current_col = current_pixel(2); % 判断当前像素是否已经被访问过 if segmented_image(current_row, current_col) == 0 % 计算当前像素与种子点的灰度差 diff = abs(double(image(current_row, current_col)) - double(image(seed_row, seed_col))); % 判断灰度差是否小于阈值 if diff < threshold % 将当前像素标记为裂纹区域 segmented_image(current_row, current_col) = 255; % 将当前像素的邻域像素入队 for i = 1:size(directions, 1) neighbor_row = current_row + directions(i, 1); neighbor_col = current_col + directions(i, 2); % 判断邻域像素是否在图像范围内 if neighbor_row >= 1 && neighbor_row <= size(image, 1) && neighbor_col >= 1 && neighbor_col <= size(image, 2) % 将邻域像素入队 queue = [queue; neighbor_row, neighbor_col]; end end end end end % 显示分割结果 imshow(segmented_image); ``` 这段代码首先读取裂纹图像,然后设置种子点和生长阈值。接下来,通过队列实现区域生长算法,将与种子点灰度差小于阈值的像素标记为裂纹区域,并将其邻域像素入队。最后,显示分割结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值