洛谷 UVA10735 混合图的欧拉回路 Euler Circuit

https://www.luogu.org/problem/UVA10735
题目大意:给出一个 V ( V < = 100 ) V(V<=100) V(V<=100)个点和 E ( E < = 500 ) E(E<=500) E(E<=500) 条边的无向边与有向边的混合图,试打印出它的任意一条欧拉回路(无向边的两个方向只能从某个方向经过一次),如果没有输出 N o    e u l e r    c i r c u i t    e x i s t No\ \ euler \ \ circuit\ \ exist No  euler  circuit  exist。输入保证图连通。

思路:参见https://blog.csdn.net/xiji333/article/details/99655634

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;

struct Edge
{
	int to,nxt,f;
};
Edge edge[2005];
int id[2005];
int head[105],cur[105];
int depth[105];
int x[505],y[505],d[505],re[4005],adm[105][105];
char op[10];
int n,m,s,t,len,tot=1;
vector<int> vec[105];

inline void addedge(int u,int v,int dis)
{
	edge[++tot].to=v,edge[tot].f=dis;
	edge[tot].nxt=head[u];
	head[u]=tot;
	edge[++tot].to=u,edge[tot].f=0;
	edge[tot].nxt=head[v];
	head[v]=tot;
}

bool bfs()
{
	memcpy(cur,head,sizeof(cur));
	memset(depth,0,sizeof(depth));
	queue<int> q;
	depth[s]=1;//源点
	q.push(s);
	int fir,to;
	while(!q.empty())
	{
		fir=q.front();
		q.pop();
		for(int i=head[fir];i;i=edge[i].nxt)
		{
			to=edge[i].to;
			if(edge[i].f&&!depth[to])
			{
				depth[to]=depth[fir]+1;
				q.push(to);
			}
		}
	}
	return depth[t];
}

int dfs(int u,int lim)//当前节点 当前流量
{
	if(u==t)//汇点
		return lim;
	int v,temp,ans=0;
	for(int i=cur[u];i;i=edge[i].nxt)
	{
		cur[u]=i; //当前弧优化
		v=edge[i].to;
		if(depth[v]==depth[u]+1&&edge[i].f)
		{
			temp=dfs(v,min(lim,edge[i].f));
			edge[i].f-=temp;
			edge[i^1].f+=temp;
			ans+=temp;
			lim-=temp;
			if(!lim)
				break;
		}
	}
	if(!ans)
		depth[u]=0;
	return ans;
}

int dinic()
{
	int ans=0;
	while(bfs())
		ans+=dfs(s,INF);
	return ans;
}

void euler(int v)
{
    for(int i=1;i<=n;i++)
	{
		if(adm[v][i])
		{
			--adm[v][i];
			euler(i);
		}
	}
	re[++len]=v;
}

int main()
{
	int times;
	scanf("%d",&times);
	while(times--)
    {
        memset(d,0,sizeof(d));
        memset(id,0,sizeof(id));
        memset(head,0,sizeof(head));
        tot=1;
        scanf("%d %d",&n,&m);
        s=0,t=n+1;
        for(int i=0;i<m;i++)
        {
            scanf("%d %d %s",&x[i],&y[i],op);
            ++d[x[i]],--d[y[i]];
            if(op[0]=='U')//给无向边定向
                id[i]=tot+1,addedge(x[i],y[i],1);
            else
                id[i]=-1;
        }
        bool flag=1;
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            if(d[i]&1)
                flag=0;
            d[i]/=2;
            if(d[i]>0)
            {
                addedge(s,i,d[i]);
                sum+=d[i];
            }
            else
                addedge(i,t,-d[i]);
        }
        if(!flag)
            printf("No euler circuit exist\n");
        else
        {
            int ans=dinic();
            if(ans!=sum)
                printf("No euler circuit exist\n");
            else
            {
                len=0;
                memset(adm,0,sizeof(adm));
                for(int i=0;i<m;i++)
                {
                    if(id[i]>0&&!edge[id[i]].f)//需要反向的无向边
                        ++adm[y[i]][x[i]];
                    else
                        ++adm[x[i]][y[i]];
                }
                euler(1);
                printf("%d",re[len]);
                for(int i=len-1;i>=1;i--)
                    printf(" %d",re[i]);
				printf("\n");
            }
        }
        if(times)
			printf("\n");
    }
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值